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Part I

COMPUTATIONAL

1 02/09/22: History and Motivation?

Not enough material for test, problem following

neuron→ p+ + e−

neutron + photon→ lots of neutrons.

If before the decay, more than 1 neutron, then would exceed the bound towards explosion.

Ulam

probability to win = nb of games / 54!

ENIAC huge computer bigger than a room. ' to nb. of winning / 10000 cards series To realize Monte

Carlo, we have to take extremely large number tests.

Random number generator between 0 and 1.

MAMIAC, No metropolis

H =
N∑
i=1

p2
x + p2

y + p2
z

2m
+
∑
i< j

V(ri − rj) probability[r1,r2, ..., ] = exp(−βH)/Z

〈O〉β =

∫
dpidxj exp(−βH)O∫
dpidxj exp(−βH)

Suppose that we would compute π, we drop small particles with random x, y coordinates inside the square

with edge length equal to 2. Then count the number of particles inside the circle, and the total number. π is

just equal to 4 times the ratio between these two numbers, if we drop so many particles.

A◦
A�
=

∫
dxdyπ(x, y)O(x, y)∫

dxdyπ(x, y)

where π(x, y) =1 if (x,y) in the square; O(x,y) = 1 if (x,y) in the circle.

A◦
A�
=

πr2

(wr)2
=
π

4
'

∑N
i=1 O(x, y)

N
±

std(O)
√

N
where std is in order of 1.

std(O) =

√√√
1
N

N∑
i=1

O2(x, y) −
(∑

O(x, y)
N

)2

2 09/09/22: Markov chain Monte Carlo (MCMC)

pi(x, y) = 1 if allowed
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1. start from an allowd position (x0, y0)

2. (xt, yt ), xnew = xt + δx, ynew = y0 + δy

If the new coordinate is allowed, then we select as x(t + 1) = xnew same for y. If not allowed, we would

follow x(t + 1) = x(t) and y(t + 1) = y(t), namely rejecting out-of-value and counting again the last position.

Acceptance ratio = nb time you acceptance / time

A◦
A�
= ... ±

std(O)
√

Neff

where Neff independant� Ntotal

If δ is too small, Pacc is towards 1; if δ is too large, Pacc turns to 0.

halt THUMB RULE, means that we should keep Pacc near 1/2.

T =
©­­­«

P1→1 P2→1 P3→1

P1→2 P2→2 P3→2

P1→3 P2→3 P3→3

ª®®®¬
∑
j

Pi→j = 1 Pi→j ≥ 0

In general is not symmetric matrix, so eigenvalues can be complex..

3 16/09/22: IMPORTANCE SAMPLING

• Direct Sampling {X1, · · · ,XN }. X is drawn from Π(Xi). Rejection is to draw random parts

• Markov Chain {X1, · · · ,XN−1; XN }

IMPORTANCE SAMPLING Consider normalized probability: P(x), and typically Ntotal ∼ 104

〈O〉 =
∫

Q(x)P(x)dx '
1

Ntotal

Ntotal∑
i=1

O(xi)

then with c = 20, and O(x) = θ(−x) = 1 only if x < 0, we have the integral:∫ 0

−∞

1
√

2π
exp

[
−

1
2
(x − c)2

]
dx ' 2.75 × 10−89 = p

Xi =
√
−2 lnY1 cos (2πY2) + c

Suppose O = 1 with probability: (1 − p); O = 0 with probability: p. We have the standard derivation:

std(O) =
√√√√(12(1 − p) + 02p)︸                ︷︷                ︸

〈O2〉

− p2︸︷︷︸
〈O〉2

=
√

p(1 − p)

error =
std(O)
√

Ntotal
=

√
p(1 − p)
√

Ntotal
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P(X) the probability we want to sample; Q(X) PDF defined in the same domain. Thus we have

〈O〉 =
∫

dXP(X)O(X) =
∫

dXO(X)Q(X)
P(X)
Q(X)︸︷︷︸

w(x)

=

∫
dX O(X)w(X)︸      ︷︷      ︸

Õ(X)

Q(X) =
1

Ntotal

Ntotal∑
i=1

O(Xi)w(Xi)

where Xi is drawn from Q(X).

Exponential ..? t is a p

Q(X) =
etxP(X)∫

etX′P(X ′)dX ′

W(X) =
P(X)
Q(X)

= e−tX
∫

etX
′

P(X ′)dX ′∫
1
√

2π
exp

(
tX −

1
2

c2 −
1
2

X2 + cX
)
=

{∫
dX

1
√

2π
exp

[
−

1
2
(x − (c − t))2

]}
︸                                           ︷︷                                           ︸

=1

· exp
(
1
2

t2 + ct
)
= exp

(
1
2

t2 + ct
)
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Part II

Data-Driven
Contact: monasson@phys.ens.fr

Reference: « From Statistical Physics to Data-Driven Modelling with Applications to Quantitative

Biology », by Simona Cocco, Rémi Monasson, and Francesco Zamponi, 2022, Oxford University Press.

ISBN 978-0-19-886474-5, DOI: 10.1093/oso/9780198864745.001.0001

4 14/10/22: Bayes’
This first chapter presents basic notions of Bayesian inference, starting with the definitions of elementary

objects in probability, and Bayes’ rule.

data→ get mechanism, model? predictions, generation..

Bayes’ inference: P(data, model), joint probability with data & model.

Suppose y is a random variable ∈ {a1,a2, · · · ,aL} = A. The probability P(y = ai) writes P(ai) or just

Pi. We have property like normalization:
∑

i Pi = 1 with Pi ≥ 0.

As for joint probability, y = (a, b) ∈ A × B, P(ai, bj) = Pi j .

• marginal P(ai) =
∑

j P(ai, bj).

• independence, P(ai, bj) = P(ai) × P(bj)

• conditional probability, P(ai |bj) =
P(ai ,b j )

P(b j )

• normalization,
∑

i P(ai |bj) = 1.

Bayes formula
P(a|b) =

P(a, b)
P(b)

=
P(b|a) × P(a)

P(b)

with a =model, b = data, P(b|a) = P(data|model) = likelihood of model, P(a) as prior, P(b) called evidence,

P(a|b) refers to posterior distribution of models given the data.

The German Tank Problem Suppose total numbers of tanks as N , after one battle some were destroyed.

Number of tanks destroyed in the i-th observation writes yi, we show 1 ≤ y1 < y2 < y3 < · · · < yk ≤ N ,

Y = {y1, · · · , yK } with K ≤ yK . Likelihood, the probability of data given the data P(Y |N), where N is

number of models we infer.

CK
N =

©­«
N

K
ª®¬ = N!

K!(N − K)!
P(Y |N) =

1
CK
N

P(N |Y ) =
P(Y |N) × P(N)

P(Y )
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where we have uniform P(N) over N . For evidence, Γ(z) =
∫ ∞

0 tz−1e−tdt, Γ(n) = (n − 1)!, so

P(Y ) =
∑
N ≥yK

1
CK
N

=

∞∑
N=yK

K!(N − K)!
N!

= K!
∞∑

N=yK

(N − K)!
N!

= K!·
1

K − 1
Γ(yK − K + 1)
Γ(yK )

=
K!(yK − K)!

yK !
yK

K − 1

Here, we pose the uniform P(N), and thus

P(N |Y ) =
P(Y |N)

P(Y )
=

K − 1
yK

CK
yK

CK
N

Remark: it depends on Y through yK only...

More likely value of N = yK ; the average value of N > yK .

〈N〉 =
∑
N ≥yK

P(N |Y ) · N =
K − 1
K − 2

× (yK − 1) =
1

1 − 1
K−1
(yK − 1) ' yK +

yK − K
K

> yK

〈
N2〉 − 〈N〉2 = K − 1

(K − 2)2(K − 3)
(yK − 1)(yK − K + 1)

Laplace’s birth rate problem Data Y from the city of Paris: Births between 1745 and 1770, girls:

y = 241945, boys: n − y = 251527. Suppose θ = the birth rate of girls.∫ 1

1/2
dθP(θ |Y ) =?

Still we have Bayes’ formula

P(θ |Y ) =
P(Y |θ) × P(θ)

P(Y )

P(y |θ,n) = ©­«
n

y

ª®¬ θy(1 − θ)n−y
P(θ |y) ∝ θy(1 − θ)n−y

It’s an example of Beta distribution

Beta(θ,α, β) =
θα−1(1 − θ)β−1

B(α, β)
B(α, β) =

Γ(α)Γ(β)

Γ(α + β)

with α = y + 1 ≥ 1, β = n + 1 − y ≥ 1.

θmax =
α − 1

α + β − 2
〈θ〉 =

α

α + β
var(θ) =

αβ

(α + β)2(α + β + 1)

With data above, we obtain θmax = 0.490291, 〈θ〉 = 0.490291, var(θ) = 0.0007117. n = αβ − 2, y = α − 1,

θmax = y/n.

Ppost(θ |y) =
αα−1(1 − θ)β−1

B(α, β)
= B(α, β) exp{n [θmax log θ + (1 − θmax) log(1 − θ)]︸                                        ︷︷                                        ︸

f(θ)

}
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The binary variable y = 0,1 with probability= p0, p1, respectively. We have the entropy S = −p0 log p0 −

p1 log p1.

Ppost = const. exp [n f (θ)] '︸︷︷︸
θ→θmax

const. exp
{
n
[

f (θmax) −
1
2
(θ − θmax)

2 f ′′(θmax)

]}

B =
∫ 1

0
dθ exp [n f (θ)] = exp [n f (θmax)]

∫ +∞
−∞

exp
[
−

1
2

n f ′′(θ − θmax)
2
]

= exp [n f (θ)]

√
2π
n
θmax(1 − θmax)

Near the max of Gaussian, we estimate something by variation. But 1/2 is far away from θmax... Consider

u→ 0 to extend f (θ) from integration interval to θmax.

∫ 1

1/2
dθ

exp
[
n f (θ)

(
θ − 1

2u
)]

B
=

1
B

∫ 1/2

0
du exp

[
n f

(
1
2
+ u

)]
=

1
B

exp
[
n f

(
1
2

)] ∫ ∞
0

du exp
[
−n f ′

(
1
2

)
u
]

=
1√

2π
n θmax(1 − θmax)

1

n
��� f ′ ( 1

2

)���︸                                 ︷︷                                 ︸
const.√

n

exp
{
n
[

f
(
1
2

)
− f (θmax)

]}
' 10−42

5 21/10/22: Asymptotic inference
In this chapter, we will consider the case of asymptotic inference, in which a large number of data is

available and a comparatively small number of parameters have to be inferred. In this regime, there exists a

deep connection between inference and information theory, whose description will require us to introduce the

notions of entropy, Fisher information, and Shannon information. Last of all, we will see how the maximum

entropy principle is, in practice, related to Bayesian inference.

N data yi=1, · · · ,N drown from P(y |θ̃). θ̃ is the real distribution.

θ̃ → Y = {yi} → θ ∼ θ̃

P(θ |Y ) =
P(Y |θ)P(θ)

P(Y )
∝

N∏
i=1

P(yi |θ) = exp
©­­­«

N∑
i=1

log P(yi |θ)︸       ︷︷       ︸
xi

ª®®®¬ = exp
©­­­«N

∫
dyP(y |θ̃) log P(y |θ) + · · ·︸︷︷︸

√
N

ª®®®¬
where xi is a Gaussian variable with mean and variance as:

〈x〉 =
∫

dyP(y |θ̃) log P(y |θ)
∫

dyP(y |θ̃) log2 P(y |θ) − 〈x〉2 < ∞

P(θ |Y ) ∝ exp [−NS(θ)] S(θ) = −
∫

dyP(y |θ̃) log P(y |θ)

6



where we call S(θ) as cross-entropy.

Entropy of growed-truth distribution S̃ = S(θ̃). I want to show that S(θ) ≥ S̃. Proof:

Let P(y) and Q(y) be two distributions over y. We define the Kullback-Leibler divergence

DKL(P |Q) =
∫

dyP(y) log
[

P(y)
Q(y)

]
which = cross-entropy between P and Q – entropy of P.

S(θ) − S̃ = DKL

[
P(·|θ̃)| |P(·|θ)

]
≥ 0

Here · refers to y... Let me draw y from P, and Z(y) = Q(y)
P(y) → random variable.

〈log Z〉 =
∫

dyP(y) log
Q(y)
P(y)

= −DKL(P | |Q)

〈Z〉 =
∫

dy���P(y)
Q(y)

���P(y)
= 1 ⇒ log 〈Z〉 = 0

which we address Jenssen inequality

〈log Z〉 ≤ log 〈Z〉︸  ︷︷  ︸
0

↔ DKL(P | |Q) ≥ 0

Application below: (MLE = Maximum Likelihood Estimation)

P(θ |Y ) ∝ exp [−NS(θ)] → θMLE,N→∞ = θ̃

Last week, we found

Ppost

(
θhypo −

ε

2
≤ θ ≤ θhypo +

ε

2

)
' exp

[
−NDKL

(
Pθ̃ | |Pθ,hypo

)
+ θ(Nε, log N)

Consider DKL and mean field

Qξ (y) =

L∏
i=1

(
1 + yxξ

2

)
DKL =

∑
y

Qξ (y) log
Q(y)
P(y)

DKL =
∑
yi=±1

∏
i

(
1 + yiξ

2

)
log


∏

i

(
1+yiξ

2

)
exp(−βE)

Z


since EIsing = −J

∑
〈i, j 〉 yiyj , we have

DKL = L
∑
y=±1

(
1 + yiξ

2

)
log

(
1 + yiξ

2

)
− J

∑
yi=±1

∏
i

(
1 + yiξ

2

) ∑
〈a,b〉

yayb + log Z
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For binary variable y = ±1 with p± = (1 ± ξ)/2, we get its entropy as S = −p+ log p+ − p− log p−. Note, D

refers to the dimension of system.

DKL = −LSIsing(ξ) + log Z = JLDξ2

∂

∂ξ
DKL = 0 = L


−JD2ξ +


+

1
2

log
(
1 + ξ
1 − ξ

)
︸             ︷︷             ︸

Arctanh(ξ)




Note, ξ = tanh (J · 2Dξ).

Fisher information

DKL
(
Pθ̃ | |Pθ

)
=

1
2

(
θ − θ̃

)2
I(θ̃) I(θ̃) = −

∫
dyP(y |θ̃)

∂2

∂θ2 log P(y |θ)
����
θ=θ̃

Asymptotically, the Fisher information controls how wide is the posterior.

P(θ |Y ) ∝ exp
[
−NDKLPθ̃

]
∼ exp

[
1
2

NI(θ̃)
(
θ − θ̃

)2
]

where var(θ) = 1
NI (θ̃)

.

BEYOND asymptotics (finite N)

θ̃ → Y → θ = θ∗(Y )

Maximum Likelihood Estimator (MLE): estimator θ∗(Y ) =argmax P(Y |θ)

Maxmimum A Posterior (MAP): θ∗(Y ) =argmax [P(Y |θ)P(θ)]

Bayesian Estimator: θ∗(y) =
∫

dθθPpost (θ |Y ).

Unbiased estimator:

θ∗ is unbiased of
∫

dYθ∗(Y )P(Y |θ̃) = θ̃, where Y = {· · · yi} variables with mean µ and var σ2.

µ∗(Y ) =
1
N

∑
i

yi

(
σ2

)∗
(Y ) =

1
N − 1

∑
i

[yi − µ
∗(y)]2

For any unbiased estimator θ∗,

var(θ∗) =
∫

dyP(y |θ̃)
[
θ∗(Y ) − θ̃

]2
≥

1
NI(θ̃)

called Cramer-Rao bound.

y = random variable from P(y |θ). SC(θ)=“score” of θ = ∂
∂θ log P(y |θ).

〈SC〉 =
∫

dyP(y |θ)
∂

∂θ
log P(y |θ) =

∫
dy����P(y |θ)

∂θP(y |θ)
����P(y |θ)

= 0

〈
SC2〉 = ∫

dyP(y |θ)
[
∂

∂θ
log P(y |θ)

]2
= I(θ)
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Shannon information and the Maximum Entropy Principle

H(Pxy = Px × Py) = H(Px) + H(Py)

leads to only one possible function log.

〈H〉 = C
∑
y

P(y) log
[

1
P(y)

]
= C · −

∑
y

P(y) log P(y)

H(Pxy) = −
∑
x,y

P(x, y) log P(x, y)

H(Px) = −
∑

x, yP(x, y) log P(x) H(Py) = −
∑

x, yP(x, y) log P(y)

H(Px) + H(Py) − H(Px,y)︸                            ︷︷                            ︸
MI(x,y)

=
∑
x,y

P(x, y) log
[

P(x, y)
P(x)P(y)

]

Principle of maximum entropy Random Shannon entropy..

Realization of random event y

entropy =
∑
y

p(y) log
(

1
p(y)

)
Problem: Infer some distribution p(y), y = y1, · · · , yL , with the knowledge that ®p · ®f =

∑
y p(y) f (y) = f0.

Question: What is p(y)?

Suppose I know nothing but
∑

y p(y) = 1. Natural choice is p(y) = 1
L (principle of indifference Laplace).

Puni f is maximizing Shannon entropy Suni f = log L. ... ... ... Calculations:

max

{
−
∑
y

p(y) log p(y) + λ

[∑
y

p(y) f (y) − f0

]
+ µ

[∑
y

p(y) − 1

]}
∂

∂p(y)
(·) = − log p(y) − 1 + λ f (y) + µ = 0

p(y) = eµ−1 · eλ f (y) =
eλ f (y)∑
i eλ f (i)

Note the last = rewrites eµ−1 by normalisation as the summation of numerator. In addition, if we add another

constrain
∑

y p(y)g(y) = g0, we get

p(y) =
eλ f (y)+λ

′g(y)∑
i eλ f (i)+λ′g(i)

Consider y as microstatic = { ®xi, ®pi}, and its Hamiltonian H(y) =
∑

i

®p2
i

2m∑
y

p(y)H(y) = E0 ⇒ p(y) ∝ exp [λH(y)] = exp [−βH(y)]

Exercise: for a dice f=1,2,3,4,5,6, with 〈 f 〉 = 4. What is p( f )?
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6 28/10/22: High-dimensional inference and Principal Component Analysis
While we have focused so far on how to infer simple models (with one of few parameters) from few of

many data, we are going to address now a more complex situation, where the dimensionality of the unknown

parameter vector ®θ is comparable to the number of available data. This situation, called high-dimensional

inference, is relevant in many practical applications of statistical inference methods. We will concentrate on

one of them, called principal component analysis (PCA).

Multivariate Gaussian distribution

P(y = {y1, · · · , yL}) =

√
det τ
(2π)L/2

exp ©­«−1
2

L∑
i, j=1

yiτi j yj
ª®¬

where τi j is L × L def precision matrix. We know∑
y

p(y)yi = 〈yi〉 = 0
∑
y

p(y)yiyj =
〈
yiyj

〉
=

(
τ−1

)
i j

We consider that probability, and generates data {y1, · · · , yM } = Y = L × M

Principal Component Analysis

τ = I −
s

1 + s
|e〉

〈
e
��� τi j = δi j −

s
1 + s

eiej

with s > 0 and e refers to L-dimension vector (normalized)

τ−1 = I + s |e〉
〈
e
��= Covariance.matrix =

〈
yiyj

〉
with eigenvalues of C = {1 + S,1,1, · · · }.

We want to infer |e〉 from Y = {ym=1, · · · ,M
i=1, · · · ,L }. Note Ĉi j =

1
M

∑
m ymi ymj is called correlated matrix

P(Y |τ) =

( √
det τ
(2π)L/2

)M
exp

©­­­­­­­­­«
−

1
2
∑
i, j

M∑
m=1

ymi τi j y
m
j︸                    ︷︷                    ︸

− 1
2
∑

ij τij
(∑

ym
i ym

j

)

ª®®®®®®®®®¬
=
(det τ)M/2

(2π)LM/2
exp ©­«−M

2
∑
i j

Ĉi j

(
δi j −

s
1 + s

eiej
)ª®¬

∝ exp ©­« sM
2(1 + s)

∑
i j

eiĈi jej
ª®¬

If the true value is Ci j , the exact value from data is written

Ĉi j = Ci j +
Zi j
√

M

10



where Zi j is random number at order 1. Then we are interested in the elgenvectors below:∑
j

Ĉi jvi = λvj =
∑
j

Ci jvi +
1
√

M

∑
j

Zi j︸  ︷︷  ︸
∼
√

L

Back to τ = IL×L; WHAT IS ρ(λ) eigenvalue of Ĉ? and its distribution? As M → ∞, the Dirac peak

distribution turns to the one with width. We call that λ±( 1√
M
) (which can ben computed lated by terms of

M)

Spectrum of random covariance matrix (Marchenko, Pastur, 1967) L independent var: yi, i = 1, · · · , L.

M realizations leads to

Ĉi j =
1
M

M∑
m=1

ymi ymj eigenvalues = λl

ρ(λ) =
1
L

∑
e

δ(λ − λe)

If L,M →∞ at fixed ration r = L/M → ρMP(λ)

ρMP(λ) =


√
(λ+ − λ)(λ − λ−)

2πrλ
, (r < 1)√

(λ+ − λ)(λ − λ−)

2πrλ
+

(
1 −

1
r

)
δ(λ), (r > 1)

with λ± = (1 ±
√

r)2.

Case of dependent variables with C = 1+ s |e〉 〈e | top eigenvalue of empirical Ĉ. (i) There is no change

but still MP distribution is s2 < r = L/M; (ii) r < s2, there would be additional one eigen vector |e〉 with

λ+ ∼ S + (1 + r), and 〈ê|ê〉2 = 0 for s <
√

r , but 〈ê|ê〉2 = 1−r2/s
1+r/s for s >

√
s.

7 25/11/22: Priors, regularization, sparsity

So far we have not discussed much the role of th prior distribution p(®θ) in Bayes’ rule. To be more

precise, we have considered priors that did not depend on ®θ, the so-called uniform priors. However, this

hypothesis is not optimal in many situations. Adequate priors are needed when the likelihood along does not

define a well-conditioned or well-behaved posterior distribution...

posterior =
likelihood × prior

..
p(±) =

e±h

e+h + e−h

11



Practical 1 : conjugated priors

Likelihood p(y |θ), after Laplace p(y |θ) ∝ θy(1 − θ)n−y , where y # positive events,

Conjugated prior: pα,β(θ) ∝ θα−1(1 − θ)β−1, which is Beta distribution

Posterior ∝ θy+α−1(1 − θ)n−y+β−1, we call y′ = y + α − 1 the “positive event”, and n′ − y′ = n − y + β − 1,

n′ as effective # of data.

θMAP =
y′

n′
=

y + α − 1
n + α + β − 2

=
y

n
×

n
n + α + β − 2︸           ︷︷           ︸

κ∈(0,1)

+
α − 1

α + β − 2
×

(
1 −

n
n + α + β − 2

)
︸                    ︷︷                    ︸

1−κ

so θMAP is a value ∈ (θprior =
α−1
α+β−2,

y
n = θMLE). No data refers to θprior while plenty of data refers to θMLE.

We call θMAP “shrinkage”:

θMAP = (1 − κ)θprior + κθMLE

What is exponential family?? Consider D-dim data θ:

P(y |θ) = exp
[
Ψ(y)T · θ − V(θ)

]
For instance, y = (y1, · · · , yn = ±1), θ =

{
hi, Ji j

}
the couplings with dimension N + N(N − 1)/2, for N

single variables and N(N − 1)/2 products in Ψ.

Suppose you have a Gaussian distribution

p(y |µ,σ2) =
1

√
2πσ2

exp
[
−

1
2σ2 (y − µ)

2
]

With fixed variation, what is prior over µ? It is still a Gaussion.

p(µ) =
1√

2πη2
exp

[
−
(µ − µ̄)2

2η2

]
With fixed moment, what is prior over σ2? Take τ = σ−2, we get core of Gamma function

p(τ) ∝ τα−1e−βτ

Centered Multivariate Gaussian (L-dim)

p(y1, · · · , yL |τ) =
1

(2π)L/2
√

det
(
τ−1) exp ©­«−1

2

L∑
i, j

yiτi j yj
ª®¬

We have τ−1
i j =

〈
yiyj

〉
P
and τi j a L × L positive-definitive matrix.

Conjugated prior: Wishart distribution

p(τ) ∝ (det τ)(α−1)/2 × exp ©­«−1
2
∑
i, j

τi jVi j
ª®¬
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Lp-norm based priors Suppose that you have a model with data θ = (θ1, · · · , θn)

p(θ) ∝ exp

(
−
γ

p!

D∑
i=1
|θi |

P

)
p = 2, Gaussian; p = 1, exponential distribution; p = 0, sparsity-enforcing prior.

D = 1,M = 1 data point, y = θ + z ∼ N(0,1), where z is Gaussian noise. “dumb” version of linear

regression, consider higher dimension

ym =
∑
i

Ami θi + zm

In the case D = M = 1 case, we have likelihood:

p(y |θ) =
1
√

2π
exp

(
−

1
2
(y − θ)2

)
Prior L2: p(θ) ∝ exp

(
−1

2γθ
2
)

Prior L1: p(θ) ∝ exp (−γ |θ |).

We’d like to consider in L2: minθ 1
2 (y − θ)

2 + 1
2γθ

2, getting θ = y/(1 + γ), θMAP
L2
=

y
1+γ , θ

MLE = y

We’d like to consider in L1: minθ 1
2 (y − θ)

2 + γ |θ |, getting −(y − θ)+ γ · sign(θ). In the region y ∈ (−γ,+γ),

we always have θ = 0!

p ≤ 1: good for sparsity; p ≥ 1: convexity.

P(θ |Y ) =
P(Y |θ) × Pγ(θ)

Pγ(Y )

since Pγ(θ) ∼ exp(−γ |θ |) with model parameter θ, so P(Y ) also depends on γ (hyperparameter). We then

see
∫

dDθP(Y |θ)Pγ(θ), the max to get γ.

Suppose 80% training set, 20% for test set... log P(Y |θ) decrease as γ increase for training, or + then - for

test (lower than training), with big gap at γ = 0.

Universal prior : (Jeffrey’s prior)

θ → eh

eh+e−h
, uniform over θ, getting p(h) = 1

(eh/2+e−h/2)2
. Note p(θ) = p(h) ×

�� dh
dθ

��... Non-linear transforma-

tion, so uniform distribution θ results non-uniform distribution of h.

θk+1 − θk ∝
1

Mp(θ)

DKL [p(y |θk+1)| |p(y |θk)] = 0 + 0 × ε +
1
2
ε2I(θk) + · · · ∝

I(θk)
p2(θk)

where θk+1 = θk + ε , I(θk) is Fisher information (see “Asymptotic inference”). In the end, we obtain

pJeffrey(θ) ∝
√

I(θ)

13



8 02/12/22: State space models (Hidden Markov Models)
So far, we have considered inference problems in which time played no role. In many applications,

however, data are time series produced by a dynamical process. How can we infer the underlying rules

defining this process? Wewill address this question in two frameworks: a simple one, in whichmeasurements

give directly access to the dynamical sequence of the states visited by the system, and a richer one, in which

we only have indirect knowledge about the states.

Very simple example: x = {s1 = ±1, · · · , sN } ∈ X(2N ),⇒ data = time series {X0,X1, · · · ,XT }.

Assumption Dynamics is Markovian.

P(Xt+1 |Xt,Xt−1, · · · ,X1,X0) = P(Xt+1 |Xt ) = Ω︸︷︷︸
transition.probability

(Xt → Xt+1)

Weaker: (finite memeory) P(Xt+1 |Xt,Xt−1, · · · ,X1,X0) = P(Xt+1 |Xt,Xt−1, · · · ,Xt−L+1). Here, we could

combine Xt,Xt−1 · · · Xt−L+2 as X̃t .

P(data) = P(X0, · · · ,XT ) =

T−1∏
t=0
Ω(Xt → Xt+1) =

∏
x,y

Ω(x → y)N (x→y) = exp

{∑
x,y

N(x → y) logΩ(x → y)

}
where N(x → y) is s.t. x = xt, y = xt+1.

Consider MLE of Ω: ΩMLE(x → y) =
N (x→y)∑
z N (x→z)

max
Ω

{
log P(data|Ω) +

∑
x

λx

[∑
y

Ω(x → y) − 1

]} ∑
x,y

N(x → y) logΩ(x → y)

∂(.)

∂Ω(x → y)
= 0 =

N(x → y)

Ω(x → y)
+ λx →

∑
y

N(x → y) + λx
∑
y

Ω(x → y) = 0

Assumption Stationary distribution. Wait long enough: P(xτ = x) = π(x) independent of τ.

N(x → y) ' Tπ(x)Ω(x → y) + · · ·

P(x0, · · · , xT ) ' exp
−T

∑
x

π(x)

[
−
∑
y

Ω(x → y) logΩ(x → y)

] 
where T is time duration. The part in the box is called entropy rate.

Hidden Markov Model (HMM)

Consider the case below: we can not see X but Y , with q(y |x) = emission probability, from Xt to Yt :

14



→ Xt−1 → Xt → Xt+1 →

↓ ↓ ↓

→ Yt−1 → Yt → Yt+1 →

®Xt+1 ∈ R
D = A ®Xt + ®Wt ®yt ∈ R

D′ = B ®Xt + ®εt

See: Kalmer filter article on the website. (Useless link... ...)

HMM N states x(i), i = 1, · · · ,N; M symbols y(j), j = 1, · · · ,M; ΩN×N transition matrix; qM×N emission

matrix. Initial state x0.

Question-1: Given a set of observations Y = (y1, · · · , yT ) and knowledge of Ω,q, x0. What is the probability

of Y , ie. P(Y )?

Question-2: Given Y and Ω,q, x0. What are the most likely states X = (x1, · · · , xN ).

Question-3: Given Y , what are Ω,q?

Question-1

P(Y,X) =
T−1∏
t=0
Ω(xt → xt+1)︸                ︷︷                ︸

P(X)

T∏
t=1

q(yt |xt ) Mt+1(xt+1, xt ) = Ω(xt → xt+1) · q(yt+1 |xt+1)

P(Y ) =
∑
X

P(Y,X) =
∑

X1, · · · ,XT

M1(x1, x0)M2(x2, x1) · · ·MT (xT , xT−1)

=
∑

X1, · · · ,XT

MT (xT , xT−1) · · ·M2(x2, x1)M1(x1, x0) =
∑
xT

(MT × · · · × M2 × M1) (xT , x0)

Here we exploit matrix multiplication; and the property M2(x2, x1) × M1(x1, x0) = (M2 × M1)(x2, x0), where

1st x1 is column in M2 and 2nd x1 is rank in M1.

Question-2

P(X |Y ) =

∏T−1

t=0
Ω(xt → xt+1)

∏T

t=1
q(tt |xt )

P(Y )
=

MT (xT , xT−1) · · ·M2(x2, x1)M1(x1, x0)

P(Y )

How do we maximize over X in P(X |Y )? Two pass algorithm X0 ↔ XT .

Optimize over x1: (N possible values of x2)

x∗1(x2) = argmax

M2(x2, x1) · M1(x1, x0)︸                      ︷︷                      ︸
P∗2(x2)


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Optimize over x2:

x∗2(x3) = argmax


M3(x3, x2) · M2(x2, x∗1(x2)) · M1(x∗1(x2), x0)︸                                                  ︷︷                                                  ︸

P∗3(x3)


We repeat the process, getting p∗T (xT ). Maximize it as x∗T and we return to x∗

T−1 by the relation we just found,

until x0, namely X0 ↔ XT .

Exercise: P(xt=18) =?, P(xt=18, xt=25) =?

Question-3

We can compute “efficiently” Pθ(Y ).

Procedure Expectation Maximization (EM)

Idea suppose we have estimate θe, then we find θb s.t Pθb (Y ) ≥ Pθe (Y ). I know how to sample Pθe (X |Y ).

I define

G(θ) =
∑
X

Pθe (X |Y ) log Pθ(X,Y )︸    ︷︷    ︸
joint

Claim θb = argmaxG(θ) is a better estimate of θ than θe.

Pθ(X,Y ) =
∏
t

Ω(xt → xt+1)
∏
t

q(yt |xt )

Proof We know Pθ(Y ) = Pθ(X,Y )/Pθ(X |Y ), and then

log Pθ(Y ) = log Pθ(X,Y ) − log Pθ(X |Y )∑
X

Pθe (X |Y ) →

���
����∑

X

Pθe (X |Y )︸          ︷︷          ︸
=1

log Pθ(Y ) =
∑
X

Pθe (X |Y ) log Pθ(X,Y )︸                            ︷︷                            ︸
G(θ)

−
∑
X

Pθe (X |Y ) log Pθ(X |Y )

∀θ, log Pθ(Y ) = G(θ) −
∑
X

Pθe (X |Y ) log Pθ(X |Y )

θe : log Pθe (Y ) = G(θe) −
∑
X

Pθe (X |Y ) log Pθe (X |Y )

log Pθ(Y ) − log Pθe (Y ) = G(θ) − G(θe) +
∑
X

Pθe (X |Y ) log
[

Pθe (X |Y )
Pθ(X |Y )

]
︸                                 ︷︷                                 ︸

DKL≥0

log Pθ(Y ) − log Pθe (Y ) ≥ G(θ) − G(θe)
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How to maimize G(θ) over θ = (Ω,q)?

Pθe (X |Y ) =

∏
t

Ωe(xt → xt+1)
∏
t

qe(yt |xt )

∑
X′

∏
t
Ωe(X ′t → X ′

t+1)
∏

t
qe(yt |X ′t )

G(θ) =
∑
X

Pθe (X |Y ) log Pθ(X,Y ) =
∑
X

Pθe (X |Y )

{∑
t

logΩ(Xt → Xt+1) +
∑
t

log q(yt |Xt )

}
max under constraints (i)

∑
y Ω(x → y) = 1,∀x; (ii)

∑
y q(y |x) = 1,∀x. We need to max:

max

{
G(Ω,q) −

∑
X

µX × (i) −
∑
X

ηX (ii)

}
∂G

∂Ω(x → x ′)
= 0 =

∑
X

Pθe (X |Y )

{∑
t

δx,xt δx′,xt+1

Ω(x → x ′)

}
− µX =

〈N(xt = x → xt+1 = x ′)〉θe
Ω(x → x ′)

− µX

Ω(x → x ′) =
〈N(xt = x → xt+1 = x ′)〉θe

〈N(xt = x)〉θe
Similarly, for transition matrix, we change variables right of→:

q(y |x) =
〈N(xt = x → yt = y)〉θe

〈N(xt = x)〉θe

9 09/12/22: Probabilistic graphical models & Boltzmann machine
Understanding how the many elementary components of a system, be they neurons, genes, species, etc.,

interact to produce a global behavior is the central scope of data-driven modeling. A simple way to charac-

terize these interactions is to look at the correlations between pairs of components. Yet, pairwise correlations

are potentially misleading, as they can reflect indirect effects mediated via third-body components, rather

than direct interactions. A more sensible estimate of interactions is provided by the graph of dependencies

we have introduced in the context of multivariate Gaussian distribution. Briefly speaking, the idea is to look

at the conditional probability of a component, or variable yi, given the other yj . The question we will ask

below is: how can this graph, or network, be reconstructed from a set of observations of the variables?

(Two lectures today... BON COURAGE!!!)

From Lecture 3, we see PCA. Consider interaction graph inference, position at i reads xi, interaction

shown as L × L matrix Ti j between sites i and j. Probability:

P(x) ∝ exp ©­«−1
2
∑
i j

xiTi j xj
ª®¬
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Categorical variables→ binary variables

Independent-site model Configuration of data reads σ = (σ1, · · · , σN ), and each σi has q values. Proba-

bility: P(σ) =
∏N

i=1
pi(σi). For each site i, its probability reads:

pi(σi) =
exp [hi(σi) + X]∑
i exp [hi(σi) + X]

with hi the position weight matrix in transformation, and X can be any constant not influencing probability.

Thereafter q = 2, we consider the following transformation:

σi = 1 or 2 → σi = 0,1

hi(1) and hi(2) → hi = hi(2) − hi(1)

pi(σi) =
ehiσi

1 + ehi

Inference of hi through MLE

For data
{
σa=1, · · · ,M
i

}
, its log-likelihood reads

∑
a

log pi(σa
i ) = hi

∑
a

σa
i − M log

(
1 + ehi

)
= M

{
hi 〈σi〉 − log

(
1 + ehi

)}
∂

∂hi
(•) = 0 → 〈σi〉 =

ehiσi

1 + ehi
=

∑
σi=0,1

σipi(σi)

called Moment-matching condition.

−LL = −
∑
a

log pModel
i (σa

i ) pData
i (σi) =

1
M

∑
a

δσi ,σ
a
i

LL = −
∑
σi=0,1

pData
i (σi) log pModel

i (σi)

Here, LL = cross-entropy between pData, pModel.

Connection with MaxEnt We maintain first moment conserved

max
{p(σ)}

{
−
∑
σ

p(σ) log p(σ) + λ

[∑
σ

p(σ) − 1

]
+ µ

[∑
σ

p(σ)σ − 〈σ〉data

]}
∂

∂p(σ)
(•) = 0 = − log p(σ) − 1 + λ + µσ → p(σ) = eλ−1eµσ

∂

∂p(σ)
∂

∂p(τ)
(•) = −

δσ,τ

p(σ)

Therefore, we maximize Shanon entropy (≤ 0) = we minimize cross entropy with pdata ≥ 0. Both give the

same result in model space, where model fitting data (〈σ〉Data).
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Coupled-site model Only consider 2-body interactions

p(σ) =
∏
i

p(σi)
∏
i< j

p(σi, σj) =
1
Z

exp ©­«
∑
i

hiσi +
∑
i< j

Ji jσiσj
ª®¬

For instance, there would be 20 × 20 matrix for amino acides in exponential. But here we only consider

binary parameters, hence we write Ji jσiσj . Cross-entropy reads:

Cross − entropy = −M

∑
i

hi 〈σi〉
Data +

∑
i< j

Ji j
〈
σiσj

〉Data
− log Z

[{
hi, Ji j

}]
Minimize over

{
hi, Ji j

}
∂Cross − entropy

∂hi
= 0 = 〈σi〉

Data −
1
Z
∂Z
∂hi︸ ︷︷ ︸

〈σi 〉
Model,∀i

∂Cross − entropy
∂Ji j

= 0 =
〈
σiσj

〉Data
−

1
Z
∂Z
∂Ji j︸ ︷︷ ︸

〈σiσj〉
Model

,∀i<j

Consider X in N(N + 1)/2 dimension, N for σi, N(N − 1)/2 for σiσj ; similarly for θ = (hi, Ji j)T

pModel(X) =
1

Z(θ)
exp

∑
α

θαXα

∂

∂θα

∂

∂θβ
Cross − entropy =

〈
XαXβ

〉Model
− 〈Xα〉Model 〈Xβ

〉Model
≥ 0

Consider L2 prior: exp
(
−
γ
2
∑

α θ
2
α

)
. Additive contribution to cross-Ent = +γ2

∑
α θ

2
α. Additive contribution

to Hessian matrix = +γδαβ , see second derivative.

Boltzmann Machine Learning (1986)

Idea:

• Start from guesses for h0
i , J

0
i j .

• Compute 〈σi〉
Model,

〈
σiσj

〉Model, with Monte Carlo.

• Update parameters with small parameter η called Learning rate:

ht+1
i = ht

i − η
(
〈σi〉

Model − 〈σi〉
Data

)
Jt+1
i = Jti − η

(〈
σiσj

〉Model
−

〈
σiσj

〉Data
)

θt+1 = θt − η
∂Cross − Ent

∂θ

Perhaps we jump far away from the local minimum we want due to large first-order derivative, thus

we can consider second derivative and decrease θ while differential.
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Approximate inference: Mean Field Callen identities: with Hi =
∑

j,i Ji jσj + hi

〈σi〉 =

〈 exp Hi({σj})

1 + exp Hi({σj})

〉Model

{σj,i }

Mean Field:

〈σi〉
MF '

e 〈Hi 〉

1 + e 〈Hi 〉
=

e
∑

j Ji j 〈σj〉
MF
+hi

1 + e
∑

j Ji j 〈σj〉
MF
+hi

there are N unknown equations, for fixed Ji j, hi.

Consider response matrix Ri j =
∂〈σi 〉

MF

∂h j
.

• Fluctuation-dissipation theorem:

〈σi〉 =
∂

∂hi
log Z =

1
Z
∂Z
∂hi

Ri j =
∂ 〈σi〉

MF

∂hj
=

∂

∂hj

(
1
Z
∂Z
∂hi

)
=

1
Z

∂2Z
∂hi∂hj

−
1
Z2

∂Z
∂hi

∂Z
∂hj
=

〈
σiσj

〉
− 〈σi〉

〈
σj

〉
= Ci j

• Using MF

Ri j =
∂ 〈σi〉

MF

∂hj
=

∂

∂hj
F

(∑
k

Jik 〈σk〉
MF + hi

)
F(u) =

eu

1 + eu

Ri j = F ′
(
〈Hi〉

MF
)
·

(∑
k

Jik × Rk j + δi j

)
R = D (JR + I) = C D−1 = J + R−1

Here D is a diagonal matrix, expressed by F ′
(
〈Hi〉

MF
)
. If i , j, Di j = 0 leads to

Ji j = −(C−1)i j

Pseudo-likelihood approximation Data σa=1, · · · ,M
i=1, · · · ,N → {hi, Ji j}. P(σi |{σj,i}) depends on all Ji j .

MLE on one row of Ji j :

LL =
M∑
a=1

log P(σa
i |{σ

a
j,i}; hi; {Ji j}) P(σa

i |{σ
a
j,i}; hi; {Ji j}) ∝

eσ
a
i

(∑
j Ji jσ

a
j +hi

)
1 + e

∑
j Ji jσ

a
j +hi

max over Hi, over Ji j for j , i.

LL = M
hi 〈σi〉

Data +
∑
j

Ji j
〈
σiσj

〉Data
−

〈
log

(
1 + e

∑
j Ji jσ

a
j +hi

)〉Data


∂LL
∂hi

= 0 = 〈σi〉
Data −

〈
e
∑

k Jikσ
a
k
+hi

1 + e
∑

k Jikσ
a
k
+hi

〉Data

=
〈
σiσj

〉Data
−

〈
σj

e
∑

k Jikσ
a
k
+hi

1 + e
∑

k Jikσ
a
k
+hi

〉Data

To prove that only few Ji j are non-zero, we use L1 norm and substrate γ
∑

j

��Ji j �� in LL.
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Second Lecture
Exam on Friday, Jan 6th. NOT at SU, bad network; but ENS 3rd floor (L357 or L367), from 2 to 5pm.

There would be one theoretical question like those from lectures, and one practical question like TD. Note,

lecture notes & TDs are allowed, as well as personal laptop. :-)...

Consider the following model with σi, i = 1, · · · ,N , and hµ, µ = 1, · · · ,M ≤ N .

P(σ) =
1
2

exp ©­«
∑
i

giσi +
1
2
∑
i, j

Ji jσiσj
ª®¬

Ji j =
N∑
µ=1

λµvi,µvj ,µ

vµ is normalized eigenvector associated to λµ. And hµ is hidden variables.

P(σ) =
1
2

e
∑

i giσi
∏
µ

exp

1
2
λµ

(∑
i

viµσi

)2 →

∫ +∞
−∞

dhµ
√

2π
exp

(
−

1
2

h2
µ + hµ

√
λµ

∑
i

viµσi

)
This is called Restricted Boltzmann machine.

Define joint probability: P(σ, h), and P(σ) =
∫

dhp(σ, h) marginal for cond. probability.

P(h|σ) ∝
∏
µ

exp


−

1
2

h2
µ + hµ

(√
λµ

∑
i

viµσi

)
︸               ︷︷               ︸

Iµ (σ)


P(σ |h) ∝

∏
i

exp


σi

©­­­­­­­«
gi +

∑
µ

√
λµviµhµ︸           ︷︷           ︸
Ii(h)

ª®®®®®®®¬


This is much stronger than PCA, since we can change hµ. We do projection of data towards I.

Consider a machine with input x ∈ RN and output x ∈ RN , we insert one layer y ∈ RK as K � N . We

write y` = f (
∑

i W`ixi) as Encoder, θ j = g(
∑

` vj` y`) ' xj as Decoder. Problem: find weights W, v such

that on a data distribution:

1
M

M∑
a=1


∑
j

[
xaj − g

(∑
`

vj` f (
∑
i

v`ixai )

)]2
is minimum. Namely we have to find several planes in RK with largest variances of projected data from RN .

If f (u) = u,g(u) = u, so X ' VN×K ·WK×N · · · X . Consider the data with noise, we could only keep

eigenvalues larger than noise amplitude.
〈
XiXj

〉
− 〈Xi〉

〈
Xj

〉
→ eigenvalues :λ1 ≥ λ2 ≥ · · · ≥ λN ≥ 0.

Consider one machine with hidden units in dim K = N , but many y` = 0.

... ...
Below are course based on Slides

Images:

12000 Images = 6000 natural + 6000 man-made, 256*256 pixels.
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Principal component analysis:

compute correlation matrix C(r,r’), where r is 2D vector

Diagonalize and find top components: 8 patterns thought

Similar to 2D Fourier modes (plane waves)

Comes from statistical properties of images. Due to statistical properties of images: translation invariance

approximate rotation invariance.

Sparse auto-encoder:

See Ng, 2001. 100(+1) input units, 100 output units, Images=10*10 pixels. 100 hidden units

σµ =
1

1 + exp
(
−
∑

i Wµixi
)

Sparse auto-encoder:

trained on 100 natural images, we get 10*10 patterns with bright-dark patterns by wµi∑
i w

2
µi

called Sparse-dictionary learning
Sparse-dictionary learning:

180 basis functions, 12*12 pixel images, 10000 natural images S(x) = log
(
1 + x2)

Some images from Olshausen , Field 1996.

Receptive Fields in Macaque V1:

Ringach, 2002. Zylberberg, Murphy, DeWeese 2011

Restricted Boltzmann Machines:

Graphical model constituted by two sets of random variables that are coupled together:

P(v, h) =
1
Z

exp[−E(v, h)] E(v, h) = −
∑
i

givi +
∑
µ

Uµ(hµ) −
∑
i,µ

wiµvihµ

... Smolensky 1986

Not necessarily we put U(h) ∼ h2, but we can add γ |h| for instance. Thus we modifchange behavior near

the origin.

MNIST: Unsupervised learning of synthetic digits:

60000 images of digits with 28*28 pixels.

Easy for 〈σi〉, but no correlation? Hard, we consider
〈
σData
i hµ

〉
.

Weights:

Bernoulli RBMs, Trained on MNIST

Fischer & Igel. Training Restricted Boltzmann Machine: An Introduction, 2014.

Learning continuous invariances:

• Features reflect the data distribution in a non-trivial way

• What happens for data distribution with continuous invariances?
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• Do not want to hardwire the symmetry eg convolutional architecture

• Show very simple example

• Problem solved by the brain ...

Learning with RBM: dynamical symmetry restoration:

Ising 1D ring, many config.s toward 1 hidden units (most stupid machine). It could reflects correlation

length! W looks like a peak, but the peak position would move as learning time increases.

More hidden layers for the same system? They would move together, with different peak position but same

frequency

Representation of space in the brain:

The Nobel Prize in Physiology or Medicine 2014

John O’Keefe & “place cells” in Hippocampus
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