Brownian Motion near a Soft Surface

Yilin YE^{1,2}

Yacine AMAROUCHENE¹, David DEAN¹, Thomas SALEZ¹

¹Laboratoire Ondes et Matière d'Aquitaine, Univ. Bordeaux ²École Normale Supérieure, Université Paris Sciences et Lettres

MC24 - Simulations des colloïdes

Brownian motion

- ▶ 1827, Robert Brown: random motion of pollen particles;
- 1901, Louis Bachelier: theory of speculation;
- ▶ 1905, Albert Einstein: diffusive model; $D_{\text{bulk}} = \frac{k_{\text{B}}T}{6\pi nr}$
- 1908, Paul Langevin: equations of motions;
- ▶ 1909, Jean Perrin: experiments to measure N_A;

Brownian motion of pollen J. Perrin, in *Atoms*, London: Constable **1914**, pp. 115.

Brownian motion of stock price

Confined Brownian motion

L. Faucheux, A. Libchaber. Phys. Rev. E. 1994, 49(6), 5158.

M. Lavaud, et al. Phys. Rev. Res. 2021, 3(3), L032011.

イロト イヨト イヨト イヨト 二日

 \circ ElastoHydroDynamic lift force

J. Skotheim, L. Mahadevan. Phys. Rev. Lett. 2004, 92, 245509.

Z. Zhang, et al. Phys. Rev. Lett. 2020, 124(5), 054502.

イロン イロン イヨン イヨン

 \odot Situation of the problem

Brownian motion

Confined

ElastoHydroDynamics

< □ > < ⑦ > < 注 > < 注 > 注 のへで 5/15

\odot Situation of the problem

\odot Elastohydrodynamic interactions

$$\begin{aligned} x &= X_{\rm G} \cdot r\sqrt{2\varepsilon} \\ \delta &= \Delta \cdot r\varepsilon \\ \theta &= \Theta \cdot \sqrt{2\varepsilon} \\ t &= T \cdot r\sqrt{2\varepsilon} \end{aligned}$$

<ロト < 部 ト < 言 ト く 言 ト こ の Q (や 6/15

\odot Elastohydrodynamic interactions

$$\begin{split} \ddot{X}_{\rm G} &+ \frac{2\varepsilon\xi}{3}\frac{\dot{X}_{\rm G}}{\sqrt{\Delta}} + \frac{\kappa\varepsilon\xi}{6}\left[\frac{19}{4}\frac{\dot{\Delta}\dot{X}_{\rm G}}{\Delta^{7/2}} - \frac{\dot{\Delta}\dot{\Theta}}{\Delta^{7/2}} + \frac{1}{2}\frac{\ddot{\Theta} - \ddot{X}_{\rm G}}{\Delta^{5/2}}\right] = 0\\ \ddot{\Delta} &+ \xi\frac{\dot{\Delta}}{\Delta^{3/2}} + \frac{\kappa\xi}{4}\left[21\frac{\dot{\Delta}^2}{\Delta^{9/2}} - \frac{(\dot{\Theta} - \dot{X}_{\rm G})^2}{\Delta^{7/2}} - \frac{15}{2}\frac{\ddot{\Delta}}{\Delta^{7/2}}\right] = 0\\ \ddot{\Theta} &+ \frac{4\varepsilon\xi}{3}\frac{\dot{\Theta}}{\sqrt{\Delta}} + \frac{\kappa\varepsilon\xi}{3}\left[\frac{19}{4}\frac{\dot{\Delta}\dot{\Theta}}{\Delta^{7/2}} - \frac{\dot{\Delta}\dot{X}_{\rm G}}{\Delta^{7/2}} + \frac{1}{2}\frac{\ddot{X}_{\rm G} - \ddot{\Theta}}{\Delta^{5/2}}\right] = 0 \end{split}$$

T. Salez, and L. Mahadevan, J. Fluid Mech. 2015, 779, 181-196

\odot Langevin equation

$$\dot{v} = -\gamma v + \delta F/m$$

P. Langevin, Compt. Rendus 1908, 146, 530-533.

Langevin equation
$$\rightarrow v(t) \rightarrow \langle v^2(t) \rangle \rightarrow$$
 noise amplitudes
 $\langle v(0)v(t) \rangle \rightarrow$ mean square displacement (MSD)

diffusion coefficients

\odot Modified fluctuation-dissipation relation

 $\begin{array}{c} \dot{v}_i \text{ coefficients} \longrightarrow \text{mass matrix } M_{\alpha\beta}(\kappa, \Delta) \\ & & \text{real mass } m_i \longrightarrow \text{effective friction } \gamma_{\text{eff}}(\kappa, \Delta) \\ \hline v_i \text{ coefficients} \longrightarrow \text{friction matrix } \gamma_{\alpha\beta}(\kappa, \Delta) \end{array}$

$$\gamma_{\mathrm{eff}} = M_{lphaeta}^{-1} \cdot m_{lpha} \cdot \gamma_{lphaeta}$$

\odot Modified fluctuation-dissipation relation

 $\begin{array}{c} \dot{v}_i \text{ coefficients} \longrightarrow \text{mass matrix } M_{\alpha\beta}(\kappa, \Delta) \\ & & \text{real mass } m_i \longrightarrow \text{effective friction } \gamma_{\text{eff}}(\kappa, \Delta) \\ \hline v_i \text{ coefficients} \longrightarrow \text{friction matrix } \gamma_{\alpha\beta}(\kappa, \Delta) \end{array}$

$$\gamma_{\mathrm{eff}} = M_{\alpha\beta}^{-1} \cdot m_{lpha} \cdot \gamma_{lphaeta}$$

$$v_{i} = v_{i0} + \kappa \cdot v_{i1} \longrightarrow \langle v_{i0} v_{i1} \rangle (t, \kappa) \longrightarrow$$

$$\gamma_{i} = \gamma_{i0}(\Delta) + \kappa \cdot \gamma_{i1}(\Delta) \longrightarrow$$
noise correlator amplitude
$$\delta F_{i} = \delta F_{i0} + \kappa \cdot \delta F_{i1} \longrightarrow \langle \delta F_{i0} \delta F_{i1} \rangle (\kappa)$$

$$\langle \delta F_i(\tau_1) \delta F_i(\tau_2) \rangle \propto 2k_{\rm B}T \ m_i \ \gamma_{i0} \ \delta(\tau_1 - \tau_2) \cdot \left[1 - \kappa \cdot \frac{\gamma_{i1}(\Delta)}{\gamma_{i0}(\Delta)} \right]$$

 • Simulation with **fixed** height (Δ) - Effect of a rigid wall ($\kappa = 0$)

$$\epsilon = 0.1$$
 $\xi = 1.0$ $\Delta \equiv \Delta(0)$
 $X_{\rm G}(0) = \dot{X}_{\rm G}(0) = \Theta(0) = \dot{\Theta}(0) = 0$
At long time:

$$\left\langle \Delta X_{\rm G}^2 \right\rangle \propto 2D(\kappa, \Delta)\Delta T$$

$$\log \left\langle \Delta X_{\rm G}^2 \right\rangle = \log \Delta T + \log D(0, \Delta) + C$$

イロト イヨト イヨト イヨト

• Simulation with **fixed** height (Δ) - Effect of a rigid wall ($\kappa = 0$)

$$\epsilon = 0.1$$
 $\xi = 1.0$ $\Delta \equiv \Delta(0)$
 $X_{\rm G}(0) = \dot{X}_{\rm G}(0) = \Theta(0) = \dot{\Theta}(0) = 0$
At long time:

$$\left\langle \Delta X_{\rm G}^2 \right\rangle \propto 2D(\kappa, \Delta)\Delta T$$

 $\log \left\langle \Delta X_{\rm G}^2 \right\rangle = \log \Delta T + \log D(0, \Delta) + C$

• Simulation with **fixed** height (Δ) - Effect of a rigid wall ($\kappa = 0$)

• Simulation with **fixed** height (Δ) - Effect of a rigid wall ($\kappa = 0$)

• Simulation with **fixed** height (Δ) - Effect of a rigid wall ($\kappa = 0$)

• Simulation with **fixed** height (Δ) - Effect of compliance ($\kappa \neq 0$)

$$\begin{aligned} \epsilon &= 0.1 \quad \xi = 1.0 \quad \Delta \equiv \Delta(0) \\ X(0) &= \dot{X}(0) = \Theta = \dot{\Theta} = 0 \\ \log \left\langle \Delta X_{\rm G}^2 \right\rangle &= \log \Delta T + \log D(\kappa, \Delta) + C \\ &+ \log \left[1 - \kappa \cdot \frac{\gamma_{i1}(\Delta)}{\gamma_{i0}(\Delta)} \right] + C \end{aligned}$$

 • Simulation with **fixed** height (Δ) - Effect of compliance ($\kappa \neq 0$)

$$\begin{aligned} \epsilon &= 0.1 \quad \xi = 1.0 \quad \Delta \equiv \Delta(0) \\ X(0) &= \dot{X}(0) = \Theta = \dot{\Theta} = 0 \\ \log \left\langle \Delta X_{\rm G}^2 \right\rangle &= \log \Delta T + \log D(\kappa, \Delta) + C \\ &+ \log \left[1 - \kappa \cdot \frac{\gamma_{i1}(\Delta)}{\gamma_{i0}(\Delta)} \right] + C \end{aligned}$$

г

イロト イヨト イヨト イヨト

• Simulation with **unfixed** Δ - Electrostatic repel of rigid wall ($\kappa = 0$)

• Simulation with **unfixed** Δ - Effect of compliance ($\kappa \neq 0$)

$$\epsilon = 0.1$$
 $\xi = 1.0$ $X(0) = \dot{X}(0) = 0$ $\overline{D}(\kappa) = \int_{z_{\min}}^{z_{\max}} P(\Delta) D(\kappa, \Delta) d\Delta$

$$D(\kappa, \Delta) = D(0, \Delta) \left[1 - \kappa \cdot \frac{\gamma_{i1}(\Delta)}{\gamma_{i0}(\Delta)} \right]$$

$$\log \left\langle \Delta X_{\rm G}^2 \right\rangle = \log \Delta T + \log \overline{D}(\kappa) + C$$

<ロト < 部ト < 差ト < 差ト 差 の Q (や 12/15

Summary

Noise-correlator amplitude affected by soft surface:

$$\langle \delta F_i(\tau_1) \delta F_i(\tau_2) \rangle \propto 2k_{\rm B}T \ m_i \ \delta(\tau_1 - \tau_2) \cdot (\gamma_{i0} - \kappa \cdot \gamma_{i1})$$

Less time consumed to enter the diffusive region;

Diffusion coefficients affected by softer surface;

$$D(\kappa, \Delta) = D(0, \Delta) \left[1 - \kappa \cdot rac{\gamma_{i1}(\Delta)}{\gamma_{i0}(\Delta)}
ight]$$

13/15

イロト イヨト イヨト イヨト

Perspective

V. Bertin, et al. J. Fluid Mech. 2022, 933, A23.

- 2D toy model toward the 3D case;
 - Experimental verifications;
 - "Target finding" diffusion near soft walls;

Acknowledgements

EMetBrown Group @ LOMA, Univ. Bordeaux

Contact: yilin.ye@ens.psl.eu