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◦ Brownian motion

I 1827, Robert Brown: random motion of pollen particles;

I 1901, Louis Bachelier: theory of speculation;

I 1905, Albert Einstein: diffusive model; Dbulk = kBT
6πηr

I 1908, Paul Langevin: equations of motions;

I 1909, Jean Perrin: experiments to measure NA;

Brownian motion of pollen Brownian motion of stock price
J. Perrin, in Atoms, London: Constable 1914, pp. 115.
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◦ Confined Brownian motion

L. Faucheux, A. Libchaber. Phys. Rev. E. 1994, 49(6), 5158.
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FIG. 1. (a) Measured local short-term diffusion coefficients Di

of the microparticle, normalized by the bulk value D0, as functions
of the distance z to the wall [see Fig. 2(c)], along both a transverse
direction x or y (Di = D‖ = Dx = Dy, blue) and the normal direction
z (Di = Dz, green) to the wall. The solid lines are the theoretical pre-
dictions, D‖(z) = D0η/η‖(z) and Dz(z) = D0η/ηz(z), using the local
effective viscosities η‖(z) and ηz(z) of Eqs. (3) and (4), respectively.
(b) Total normal conservative force Fz exerted on the particle as a
function of the distance z to the wall, reconstructed from Eq. (11),
using Eq. (4). The solid line corresponds to Eq. (13), with B = 4.8,
"D = 21 nm, and "B = 530 nm. The black dashed lines and gray area
indicate the amplitude of the thermal noise computed from Eq. (12).
The horizontal red dashed line indicates the buoyant weight Fg = −7
fN of the particle.

temperature T , in distilled water (type 1, MilliQ device)
of viscosity η = 1 mPa s. The sample is illuminated by a
collimated laser beam with a 532-µm wavelength. The light
scattered by one colloidal particle at a given time t interferes
with the incident beam. An oil-immersion objective lens (x60
magnification, 1.30 numerical aperture) collects the resulting
instantaneous interference pattern, and relays it to a camera

(a) (b)

(c)(d)

FIG. 2. (a) Schematic of the experimental setup. A laser plane
wave of intensity I0 illuminates the chamber containing a dilute
suspension of microspheres in water. The light scattered by a par-
ticle interferes with the incident beam onto the focal plane of an
objective lens, that magnifies the interference pattern and relays it
to a camera. (b) Typical experimental interference pattern produced
by one particle. (c) Corresponding best-fit Lorenz-Mie interference
pattern [24–28], providing a distance z = 11.24 ± 0.2 µm to the
wall, as well as the radius a = 1.518 ± 0.006 µm and refractive
index n = 1.584 ± 0.006 of the particle. (d) Angular averages of the
intensities I (normalized by I0) from the experimental and theoretical
interference patterns, as functions of the radial distance to the z axis.

(a)

(b)

FIG. 3. (a) Typical measured tridimensional trajectory r(t) =
[x(t), y(t), z(t)] of the microparticle near the wall (z = 0). (b) Mea-
sured equilibrium probability density function Peq of the distance z
between the particle and the wall. The solid line represents the best
fit to the normalized Gibbs-Boltzmann distribution in position, using
the total potential energy U (z) of Eq. (1), with B = 4.8, "D = 21 nm,
and "B = 530 nm. The inset shows the measured Debye length "D as
a function of salt concentration [NaCl]. The solid line is the expected
Debye relation "D = 0.304/

√
[NaCl], for a single monovalent salt in

water at room temperature.

with a 51.6-nm/pixel resolution [see Fig. 2(b)]. The exposure
time for each frame is fixed to 3 ms to avoid motion-induced
blurring of the image. The angular average of the intensity
profile from each time frame is then fitted [see Figs. 2(c) and
2(d)] to the Lorenz-Mie scattering function [24–28], which
provides the particle radius a, its refractive index n, and
its instantaneous tridimensional position r = (x, y, z). To re-
duce the uncertainty on the position measurement, we first
calibrate a = 1.518 ± 0.006 µm and n = 1.584 ± 0.006 sep-
arately from the first 105 time frames. The obtained refractive
index is consistent with the one reported in [16]. Then, for
each subsequent time frame, the only remaining fitted quantity
is r, which allows us to reconstruct the trajectory r(t ) with a
nanometric spatial resolution, as shown in Fig. 3(a).

Using the trajectory of the particle, one can then construct
the equilibrium probability density function Peq(r) of the po-
sition of the particle. We find that it does not depend on x and
y, but only on the distance z between the particle and the wall.
As seen in Fig. 3(b), an exponential tail is observed at large
distance, which is identified to the sedimentation contribution
in Perrin’s experiment [2], but here with the probability den-
sity function of a single particle instead of the concentration
field. In contrast, near the wall, we observe an abrupt deple-
tion, indicating a repulsive electrostatic contribution. Indeed,
when immersed in water, both the glass substrate and the
polystyrene bead are negatively charged. All together, the total
potential energy U (z) thus reads

U (z)
kBT

=
{

B e− z
"D + z

"B
, for z > 0

+∞ , for z ! 0
, (1)

where kB is the Boltzmann constant, B is a dimension-
less number related to the surface electrostatic potentials
of the particle and the wall [17], "D is the Debye length,
"B = kBT/(g#m) is the Boltzmann length, g is the gravita-
tional acceleration, and #m is the (positive) buoyant mass
of the particle. From this total potential energy, one can
then construct the Gibbs-Boltzmann distribution Peq(z) =
A exp[−U (z)/(kBT )] in position, where A is a normalization
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with a 51.6-nm/pixel resolution [see Fig. 2(b)]. The exposure
time for each frame is fixed to 3 ms to avoid motion-induced
blurring of the image. The angular average of the intensity
profile from each time frame is then fitted [see Figs. 2(c) and
2(d)] to the Lorenz-Mie scattering function [24–28], which
provides the particle radius a, its refractive index n, and
its instantaneous tridimensional position r = (x, y, z). To re-
duce the uncertainty on the position measurement, we first
calibrate a = 1.518 ± 0.006 µm and n = 1.584 ± 0.006 sep-
arately from the first 105 time frames. The obtained refractive
index is consistent with the one reported in [16]. Then, for
each subsequent time frame, the only remaining fitted quantity
is r, which allows us to reconstruct the trajectory r(t ) with a
nanometric spatial resolution, as shown in Fig. 3(a).

Using the trajectory of the particle, one can then construct
the equilibrium probability density function Peq(r) of the po-
sition of the particle. We find that it does not depend on x and
y, but only on the distance z between the particle and the wall.
As seen in Fig. 3(b), an exponential tail is observed at large
distance, which is identified to the sedimentation contribution
in Perrin’s experiment [2], but here with the probability den-
sity function of a single particle instead of the concentration
field. In contrast, near the wall, we observe an abrupt deple-
tion, indicating a repulsive electrostatic contribution. Indeed,
when immersed in water, both the glass substrate and the
polystyrene bead are negatively charged. All together, the total
potential energy U (z) thus reads

U (z)
kBT

=
{

B e− z
"D + z

"B
, for z > 0

+∞ , for z ! 0
, (1)

where kB is the Boltzmann constant, B is a dimension-
less number related to the surface electrostatic potentials
of the particle and the wall [17], "D is the Debye length,
"B = kBT/(g#m) is the Boltzmann length, g is the gravita-
tional acceleration, and #m is the (positive) buoyant mass
of the particle. From this total potential energy, one can
then construct the Gibbs-Boltzmann distribution Peq(z) =
A exp[−U (z)/(kBT )] in position, where A is a normalization
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◦ ElastoHydroDynamic lift force

FIG. 1: A rigid cylinder moves at a velocity V a distance h0 above a rigid substrate coated with

an elastic layer of thickness Hl. Hl, h0 !
√

h0R = l. We illustrate the steps of the perturbation

analysis: (b) an antisymmetric pressure distribution pushes down on the gel in front of and pulls

the gel up behind the cylinder; (c) the fore-aft gap profile symmetry is broken; (d) the new pressure

field produces a normal force. (a) and (b) correspond to an undeformed substrate, while (c) and

(d) correspond to solutions of (7), (8) and (12) for η = ∆h
h0

= 10.

Continuing our analysis in the context of a cylinder moving along a planar wall, we take

the x−direction to be parallel to the wall in the direction of motion of the cylinder and the

z−direction to be perpendicular to the wall; p is the fluid pressure; h is the distance between

the solid surfaces. Guided by lubrication theory [2] we use the following scalings

x =
√

2h0RX, z = h0Z, p =

√
2RµV

h
3/2
0

P,

h = h0H, u = V U, w =
V

√
h0√

2R
W, (3)

to reduce (1) and (2) to

∂XP = ∂ZZU, ∂ZP = 0, (4)

∂XU + ∂ZW = 0. (5)

We consider steady motion in the reference frame of the cylinder, so that the boundary

3

J. Skotheim, L. Mahadevan. Phys. Rev. Lett. 2004, 92, 245509.

deformation of a levitating droplet over a moving wall
was also used to probe the effects of the lift force [36].
Nevertheless, while this experimental literature provides
confidence in the existence of the elastohydrodynamic lift
force, as well as in its importance at small scales and for
biology, no direct force measurement was performed to
date and the saturation at the nanoscale was not yet
observed.
In this Letter, we report on the first direct measurement

of the elastohydrodynamic lift force acting on a sphere
moving within a viscous liquid and along a soft substrate,
under nanometric confinement. Using atomic force micros-
copy (AFM), the lift force is probed as a function of the gap
size, for various driving velocities, viscosities, and stiff-
nesses. The results are compared to scaling arguments and a
novel quantitative model developed from the soft lubrica-
tion theory, in linear elasticity, and for small compliances.
For larger compliances, a saturation of the lift force is
observed and its empirical scaling law is discussed.
A schematic of the experimental setup is shown in Fig. 1.

The experiment is performed using an AFM (Bruker,
Bioscope) equipped with a cantilever holder (DTFML-
DD-HE) that allows working in a liquid environment. We
use a spherical borosilicate particle (MO-Sci Corporation)
with a radius R ¼ 60" 1 μm and a roughness of 0.9 nm
measured over a 1 μm2 surface area. That sphere is glued at
the end of a silicon nitride triangular shaped cantilever
(DNP, Brukerafmprobes) using epoxy glue (Araldite,
Bostik, Coubert). The soft samples are fixed on a multiaxis
piezo-system (NanoT series, Mad City Labs), which allows
(i) to control and scan the gap distance d between the
sphere and the sample by displacing the sample vertically;
and (ii) to vibrate the sample transversally at a frequency
f ¼ ω=ð2πÞ ¼ 25 or 50 Hz, and with an amplitude A
ranging form 3.6 to 36 μm. Note that the normal displace-
ment speed 20 nm=s being much smaller than the smallest
transversal velocity amplitude Aω ¼ 0.36 mm=s, the for-
mer can be neglected and a quasistatic description with
respect to the normal motion is valid. Using the drainage
method [37], the modified stiffness kc ¼ 0.21" 0.02 N=m

of the cantilever when the sphere is attached to it is
determined using a rigid silicon wafer as a substrate,
and for large enough gap distances (d¼200–20000 nm).
The studied polydimethylsiloxane (PDMS) substrates are
prepared as follows. First, uncross-linked PDMS (Sylgard
184, Dow Corning) and its curing agent are mixed into
three different solutions, with different mixing ratios (10:1,
20:1, 30:1). Following a preliminary degassing process, a
few droplets of each solution are spin coated on a glass
substrate during a minute to get a sample of thickness in the
25–30 μm range. This is followed by an annealing step, in
an oven at 50 °C and during 24 h, in order to promote an
efficient cross-linking. The measured Young’s moduli E
of the samples (10:1), (20:1), and (30:1) are, respectively,
ð1455" 100Þ kPa,ð600" 50Þ kPa, and ð293" 20Þ kPa,
where the Poisson ratio is fixed to ν¼0.5 since cross-
linked PDMS is an incompressible material to a very good
approximation. At the Young’s moduli and low frequencies
studied here, the loss modulus of PDMS is negligible [38].
The viscous liquids employed are silicone oil and 1-decanol
with dynamic viscosities η ¼ 96 mPa s and 14.1 mPa s,
respectively.
Using scaling arguments, the lift force acting on a sphere

immersed in a viscous fluid and moving at constant
velocity V, near and parallel to a semi-infinite incompress-
ible elastic substrate of shear modulus G ¼ E=½2ð1þ νÞ',
reads [20]

Flift ∼
η2V2

G
R5=2

d5=2
; ð1Þ

in the limit of small dimensionless compliance, κ ¼
ηVR=ðGd2Þ ≪ 1. Note that, in this limit, κ corresponds
to the ratio between substrate’s deformation and gap
distance. Note also that, due to Galilean invariance, moving
the substrate at constant velocity instead of the sphere leads
to the same lift force. In view of the low frequencies at
which the substrate is oscillating, and since inertial effects
are negligible for such a confined viscous flow, this
invariance and the expression of the lift force above remain
excellent approximations in our case—with the substitution
V ¼ Aω sinðωtÞ in Eq. (1). In addition, in all experiments,
the hydrodynamic radius

ffiffiffiffiffiffiffiffiffi
2Rd

p
being much smaller than

the thickness of the soft substrate, the latter can indeed be
described as semi-infinite. Interestingly, with such a peri-
odic driving, and since the lift force depends on the squared
velocity, it can be expressed as two additive components:
(i) a time-independent one ∼η2A2ω2R5=2=ð2Gd5=2Þ; and
(ii) a component oscillating at double frequency 2f.
Focusing only on the former, it is measured though a
temporal average F ¼ hFNi of the instantaneous normal
force FN recorded by AFM (see Fig. 1).
Figure 2 shows the force F as a function of the gap

distance d, for rigid (silicon wafer) and soft substrates
(PDMS 20:1). To determine the gap distance, we take into

Piezo stage

Substrate

Sphere
Cantilever

y

z

V=A
sin

(
)

x
r

FN

R

V

x

z

PDMS substrate
(r, )

d Viscous liquidh(r, )

(a) (b)

FIG. 1. Schematic of the experimental setup. The soft PDMS
sample is fixed to a rigid piezo stage that is transversally
oscillated along time t, at angular frequency ω, and with
amplitude A. A rigid borosilicate sphere is glued to an AFM
cantilever and placed near the substrate, with silicone oil or 1
decanol as a viscous liquid lubricant. The normal force FN
exerted on the sphere, at a gap distance d from the surface, is
directly measured from the deflection of the cantilever.
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account the cantilever’s deflection induced by the normal
force, by solving the equation: d ¼ Dþ Z, where D is the
raw gap distance imposed by the piezo, and Z is the
measured DC cantilever’s deflection. As a remark, in most
cases studied here, the typical substrate’s deformation,
~F=ðπE$

ffiffiffiffiffiffiffiffiffi
2Rd

p
Þ, where E$ ¼ E=ð1 − ν2Þ [8], remains much

smaller than the cantilever’s deflection. For the rigid case,
no finite force is detected above the current nanoNewton
(nN) resolution, at all distances. This is expected, since for
such a hard surface (Young’s modulus in the 100 GPa
range), the elastohydrodynamic effects occur at gap dis-
tances much smaller than the ones typically probed here
[6]. As a remark, the fact that no force—even purely
hydrodynamic—is measured in this case is a direct con-
firmation for the validity of the quasistatic description with
respect to the imposed normal motion of the sphere. In
sharp contrast, for the soft case, a systematic nonzero force
is measured, and observed to increase as the gap distance
is reduced. Furthermore, as shown in the inset, the force
asymptotically scales as F ∼ d−5=2 at large gap distances, in
agreement with the prediction of Eq. (1). Interestingly, at
smaller gap distances, a saturation of the lift effect is
observed, as reported previously [20,33].
Having tested the asymptotic dependence of the force

with the main geometrical parameter, i.e., the gap distance,
which showed a first evidence of the lift, we now turn to the
other key elastohydrodynamic parameters appearing in
Eq. (1): the velocity amplitude Aω, the viscosity η of the
liquid, and the shear modulus G of the substrate. To test the
dependences of the force with those three parameters, we
introduce two dimensionless variables: the dimensionless
compliance κ ¼ ηVR=ðGd2Þ, and the dimensionless force
F=F$ with F$ ¼ ηVR3=2=d1=2, where V is systematically

replaced by its root-mean-squared value Aω=
ffiffiffi
2

p
due to the

temporal averaging introduced above. In such a represen-
tation, Eq. (1) becomes F=F$ ∼ κ. In Fig. 3, we thus plot F
as a function of d, and in the rescaled form, F=F$ as a
function of κ, for various sets of parameters: two different
oscillation amplitudes [Fig. 3(a)], two different oscillation
frequencies [Fig. 3(b)], two different viscosities [Fig. 3(c)],
and three different shear moduli [Fig. 3(d)]. In the inset of
each of those panels, we first observe at small κ that F=F$

is linear in κ, and that the curves for various values of the
varied parameter collapse with one another, which validates
further Eq. (1). Moreover, around κ ∼ 1, a deviation from
the previous asymptotic behavior is observed, leading to a
maximum prior to an interesting decay at large κ. In
addition, the collapse for various values of the varied
parameter is maintained, indicating that even at large
dimensionless compliance κ, the dimensionless force
F=F$ remains a function of κ only. This suggests that
the same physics, coupling lubrication flow and linear
elasticity, is at play at large κ.
We now rationalize the missing prefactor in Eq. (1), and

discuss further the behavior at large κ. For the first purpose,
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FIG. 2. Temporal average F of the normal force FN (see Fig. 1)
as a function of the gap distance d to the substrate, for both rigid
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is silicone oil with viscosity η ¼ 96 mPa s. The amplitude of the
velocity is Aω ¼ 0.57 mm=s. The inset shows a log-log repre-
sentation of the data for the soft substrate, and the solid line
therein indicates a −5=2 power law.
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FIG. 3. Measured temporal-averaged forceF as a function of gap
distance d to the soft PDMS substrates, and (insets) dimensionless
force F=F$ as a function of dimensionless compliance κ in
logarithmic scales, for various sets of parameters. (a) Two different
velocity amplitudes (as indicated) obtained with different oscil-
lation amplitudes are investigated. The substrate is cross-linked
PDMS (10:1), and the liquid is 1-decanol with viscosity
η ¼ 14.1 mPa s; (b) two different velocity amplitudes (as indi-
cated) obtained with two different working frequencies are inves-
tigated. The substrate is cross-linked PDMS (10:1), and the liquid
is silicone oil with viscosity η ¼ 96 mPa s; (c) two different liquids
with different associated viscosities (as indicated) are investigated.
The substrate is cross-linked PDMS (10:1), and the velocity
amplitudes are Aω ¼ 0.36 mm=s and Aω ¼ 2.32 mm=s for sili-
cone oil (η ¼ 96 mPa s) and 1-decanol (η ¼ 14.1 mPa s) respec-
tively; (d) three different shear moduli (as indicated) of the
substrate are investigated. The liquid is silicone oil with viscosity
η ¼ 96 mPa s, and the velocity amplitude is Aω ¼ 0.57 mm=s.
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� Situation of the problem

Brownian motion Confined ElastoHydroDynamics

⇓
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� Elastohydrodynamic interactions
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ẌG +
2εξ

3
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� Elastohydrodynamic interactions
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� Langevin equation

v̇ = −γv + δF/m

P. Langevin, Compt. Rendus 1908, 146, 530-533.

Langevin equation v(t)
〈
v 2(t)

〉
〈v(0)v(t)〉

noise amplitudes

mean square displacement (MSD)

diffusion coefficients
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� Modified fluctuation-dissipation relation

v̇i coefficients mass matrix Mαβ(κ,∆)

real mass mi

friction matrix γαβ(κ,∆)vi coefficients

effective friction γeff(κ,∆)

γeff = M−1
αβ ·mα · γαβ

vi = vi0 + κ · vi1 〈vi0vi1〉 (t, κ)

γi = γi0(∆) + κ · γi1(∆)

〈δFi0δFi1〉 (κ)δFi = δFi0 + κ · δFi1

noise correlator amplitude

〈δFi (τ1)δFi (τ2)〉 ∝ 2kBT mi γi0 δ(τ1 − τ2) ·
[

1− κ ·
γi1(∆)

γi0(∆)

]

8 / 15



� Modified fluctuation-dissipation relation

v̇i coefficients mass matrix Mαβ(κ,∆)

real mass mi

friction matrix γαβ(κ,∆)vi coefficients

effective friction γeff(κ,∆)

γeff = M−1
αβ ·mα · γαβ

vi = vi0 + κ · vi1 〈vi0vi1〉 (t, κ)

γi = γi0(∆) + κ · γi1(∆)

〈δFi0δFi1〉 (κ)δFi = δFi0 + κ · δFi1

noise correlator amplitude

〈δFi (τ1)δFi (τ2)〉 ∝ 2kBT mi γi0 δ(τ1 − τ2) ·
[

1− κ ·
γi1(∆)

γi0(∆)

]

8 / 15



• Simulation with fixed height (∆) - Effect of a rigid wall (κ = 0)
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• Simulation with fixed height (∆) - Effect of a rigid wall (κ = 0)
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• Simulation with fixed height (∆) - Effect of a rigid wall (κ = 0)
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• Simulation with fixed height (∆) - Effect of compliance (κ 6= 0)
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• Simulation with unfixed ∆ - Electrostatic repel of rigid wall (κ = 0)

HOHFWURVWDWLF�UHSHO

JUDYLW\

↑ Ue = kBT · B exp

(
−∆

`D

)
↓ Ug = mg∆

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0  10  20  30  40  50

κ=0.0

∆

T

1e-4

1e-3

1e-2

 0.1  1  10  100  1000

M
S

D
 ∆

∆ T

κ=0.00 T
1

T
0

 0

 2

 4

 6

 8

 0  0.2  0.4  0.6  0.8  1

P

∆

T = 1

T = 6

T = 9

T=12

T = 15

T = 30

T = 60

T=120

11 / 15



• Simulation with unfixed ∆ - Effect of compliance (κ 6= 0)

ε = 0.1 ξ = 1.0 X (0) = Ẋ (0) = 0

D(κ,∆) = D(0,∆)
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Summary

I Noise-correlator amplitude affected by soft surface:

〈δFi (τ1)δFi (τ2)〉 ∝ 2kBT mi δ(τ1 − τ2) · (γi0 − κ · γi1)

I Less time consumed to enter the diffusive region;

I Diffusion coefficients affected by softer surface;

D(κ,∆) = D(0,∆)

[
1− κ · γi1(∆)

γi0(∆)

]
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Perspective
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Soft-lubrication interactions between a sphere and a wall

x

y

z

a

rθ

u(t) d(t)

λ, µ

δ(r, t)

η

Ω(t)
β

S0

Sw

Figure 1. Schematic of the system. A rigid sphere of surface S0 is freely moving in a viscous fluid, near a soft
wall of surface Sw in the flat undeformed state. The lubrication pressure field deforms the latter, which induces
an EHD coupling, with forces and torque exerted on the sphere. Note that the surface deformation is magnified
for clarity, but that we restrict the analysis to the δ ! d case.

3.1. Zeroth-order solution: rigid wall
At zeroth order O(κ0), (2.6) reads

12Ḋ = ∇ ·
(

H3
0 ∇P0 + 6H0U

)
. (3.3)

In polar coordinates, (3.3) can be rewritten as

L · P0 = R2∂2
RP0 +

(
R + 6R3

D + R2

)
∂RP0 + ∂2

θ P0 = R2

(D + R2)3

(
12Ḋ − 12R cos θU

)
,

(3.4)

where L is a linear operator. We solve this equation using an angular-mode decomposition:

P0(R, T) = P(0)
0 (R, T) + P(1)

0 (R, T) cos θ, (3.5)

where the two coefficients are solutions of the ordinary differential equations

R2 d2P(0)
0

dR2 +
(

R + 6R3

D + R2

)
dP(0)

0
dR

= 12
R2Ḋ

(D + R2)3 , (3.6a)

R2 d2P(1)
0

dR2 +
(

R + 6R3

D + R2

)
dP(1)

0
dR

− P(1)
0 = −12

R3U
(D + R2)3 . (3.7a)

In accordance with the boundary conditions P(R → ∞) = 0 and P(R = 0) < ∞, the
solution is thus

P0(R, T) = − 3Ḋ
2(D + R2)2 + 6RU cos θ

5(D + R2)2 . (3.8)
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(a) (b)

FIG. 1. (a) Measured local short-term diffusion coefficients Di

of the microparticle, normalized by the bulk value D0, as functions
of the distance z to the wall [see Fig. 2(c)], along both a transverse
direction x or y (Di = D‖ = Dx = Dy, blue) and the normal direction
z (Di = Dz, green) to the wall. The solid lines are the theoretical pre-
dictions, D‖(z) = D0η/η‖(z) and Dz(z) = D0η/ηz(z), using the local
effective viscosities η‖(z) and ηz(z) of Eqs. (3) and (4), respectively.
(b) Total normal conservative force Fz exerted on the particle as a
function of the distance z to the wall, reconstructed from Eq. (11),
using Eq. (4). The solid line corresponds to Eq. (13), with B = 4.8,
"D = 21 nm, and "B = 530 nm. The black dashed lines and gray area
indicate the amplitude of the thermal noise computed from Eq. (12).
The horizontal red dashed line indicates the buoyant weight Fg = −7
fN of the particle.

temperature T , in distilled water (type 1, MilliQ device)
of viscosity η = 1 mPa s. The sample is illuminated by a
collimated laser beam with a 532-µm wavelength. The light
scattered by one colloidal particle at a given time t interferes
with the incident beam. An oil-immersion objective lens (x60
magnification, 1.30 numerical aperture) collects the resulting
instantaneous interference pattern, and relays it to a camera

(a) (b)

(c)(d)

FIG. 2. (a) Schematic of the experimental setup. A laser plane
wave of intensity I0 illuminates the chamber containing a dilute
suspension of microspheres in water. The light scattered by a par-
ticle interferes with the incident beam onto the focal plane of an
objective lens, that magnifies the interference pattern and relays it
to a camera. (b) Typical experimental interference pattern produced
by one particle. (c) Corresponding best-fit Lorenz-Mie interference
pattern [24–28], providing a distance z = 11.24 ± 0.2 µm to the
wall, as well as the radius a = 1.518 ± 0.006 µm and refractive
index n = 1.584 ± 0.006 of the particle. (d) Angular averages of the
intensities I (normalized by I0) from the experimental and theoretical
interference patterns, as functions of the radial distance to the z axis.

(a)

(b)

FIG. 3. (a) Typical measured tridimensional trajectory r(t) =
[x(t), y(t), z(t)] of the microparticle near the wall (z = 0). (b) Mea-
sured equilibrium probability density function Peq of the distance z
between the particle and the wall. The solid line represents the best
fit to the normalized Gibbs-Boltzmann distribution in position, using
the total potential energy U (z) of Eq. (1), with B = 4.8, "D = 21 nm,
and "B = 530 nm. The inset shows the measured Debye length "D as
a function of salt concentration [NaCl]. The solid line is the expected
Debye relation "D = 0.304/

√
[NaCl], for a single monovalent salt in

water at room temperature.

with a 51.6-nm/pixel resolution [see Fig. 2(b)]. The exposure
time for each frame is fixed to 3 ms to avoid motion-induced
blurring of the image. The angular average of the intensity
profile from each time frame is then fitted [see Figs. 2(c) and
2(d)] to the Lorenz-Mie scattering function [24–28], which
provides the particle radius a, its refractive index n, and
its instantaneous tridimensional position r = (x, y, z). To re-
duce the uncertainty on the position measurement, we first
calibrate a = 1.518 ± 0.006 µm and n = 1.584 ± 0.006 sep-
arately from the first 105 time frames. The obtained refractive
index is consistent with the one reported in [16]. Then, for
each subsequent time frame, the only remaining fitted quantity
is r, which allows us to reconstruct the trajectory r(t ) with a
nanometric spatial resolution, as shown in Fig. 3(a).

Using the trajectory of the particle, one can then construct
the equilibrium probability density function Peq(r) of the po-
sition of the particle. We find that it does not depend on x and
y, but only on the distance z between the particle and the wall.
As seen in Fig. 3(b), an exponential tail is observed at large
distance, which is identified to the sedimentation contribution
in Perrin’s experiment [2], but here with the probability den-
sity function of a single particle instead of the concentration
field. In contrast, near the wall, we observe an abrupt deple-
tion, indicating a repulsive electrostatic contribution. Indeed,
when immersed in water, both the glass substrate and the
polystyrene bead are negatively charged. All together, the total
potential energy U (z) thus reads

U (z)
kBT

=
{

B e− z
"D + z

"B
, for z > 0

+∞ , for z ! 0
, (1)

where kB is the Boltzmann constant, B is a dimension-
less number related to the surface electrostatic potentials
of the particle and the wall [17], "D is the Debye length,
"B = kBT/(g#m) is the Boltzmann length, g is the gravita-
tional acceleration, and #m is the (positive) buoyant mass
of the particle. From this total potential energy, one can
then construct the Gibbs-Boltzmann distribution Peq(z) =
A exp[−U (z)/(kBT )] in position, where A is a normalization

L032011-2

I 2D toy model toward the 3D case;

I Experimental verifications;

I “Target finding” diffusion near soft walls;

M. Lavaud, et al. Phys. Rev. Res. 2021, 3(3), L032011.
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