Brownian Motion near a Soft Surface

Yilin $\mathrm{YE}^{1,2}$
Yacine AMAROUCHENE ${ }^{1}$, David DEAN ${ }^{1}$, Thomas SALEZ ${ }^{1}$

${ }^{1}$ Laboratoire Ondes et Matière d'Aquitaine, Univ. Bordeaux ${ }^{2}$ École Normale Supérieure, Université Paris Sciences et Lettres

MC24 - Simulations des colloïdes

- Brownian motion

- 1827, Robert Brown: random motion of pollen particles;
- 1901, Louis Bachelier: theory of speculation;
- 1905, Albert Einstein: diffusive model; $D_{\text {bulk }}=\frac{k_{\mathrm{B}} T}{6 \pi \eta r}$
- 1908, Paul Langevin: equations of motions;
- 1909, Jean Perrin: experiments to measure N_{A};

Brownian motion of pollen
J. Perrin, in Atoms, London: Constable 1914, pp. 115.

Brownian motion of stock price

- Confined Brownian motion

L. Faucheux, A. Libchaber. Phys. Rev. E. 1994, 49(6), 5158.

M. Lavaud, et al. Phys. Rev. Res. 2021, 3(3), L032011.

- ElastoHydroDynamic lift force

J. Skotheim, L. Mahadevan. Phys. Rev. Lett. 2004, 92, 245509.

Z. Zhang, et al. Phys. Rev. Lett. 2020, 124(5), 054502.
\odot Situation of the problem

Brownian motion

Confined
ElastoHydroDynamics
\odot Situation of the problem

Brownian motion
Confined
ElastoHydroDynamics

$>\xi=\frac{3 \sqrt{2} \eta}{r^{3 / 2} \varepsilon \sqrt{\rho\left(\rho-\rho_{s}\right) g}}$ dimensionless viscosity;

- $\kappa=\frac{2 h_{s} \eta \sqrt{g\left(\rho-\rho_{s}\right)}}{r^{3 / 2} \varepsilon^{5 / 2}(2 \mu+\lambda) \sqrt{\rho}}$ dimensionless compliance; inverse of Young's modulus;
\odot Elastohydrodynamic interactions

$$
\begin{aligned}
x & =X_{G} \cdot r \sqrt{2 \varepsilon} \\
\delta & =\Delta \cdot r \varepsilon \\
\theta & =\Theta \cdot \sqrt{2 \varepsilon} \\
t & =T \cdot r \sqrt{2 \varepsilon}
\end{aligned}
$$

\odot Elastohydrodynamic interactions

$$
\begin{aligned}
x & =X_{G} \cdot r \sqrt{2 \varepsilon} \\
\delta & =\Delta \cdot r \varepsilon \\
\theta & =\Theta \cdot \sqrt{2 \varepsilon} \\
t & =T \cdot r \sqrt{2 \varepsilon}
\end{aligned}
$$

$$
\begin{aligned}
& \ddot{X}_{\mathrm{G}}+\frac{2 \varepsilon \xi}{3} \frac{\dot{X}_{\mathrm{G}}}{\sqrt{\triangle}}+\frac{\kappa \varepsilon \xi}{6}\left[\frac{19}{4} \frac{\dot{\Delta} \dot{X}_{\mathrm{G}}}{\Delta^{7 / 2}}-\frac{\dot{\Delta} \dot{\Theta}}{\Delta^{7 / 2}}+\frac{1}{2} \frac{\ddot{\theta}-\ddot{X}_{\mathrm{G}}}{\Delta^{5 / 2}}\right]=0 \\
& \ddot{\Delta}+\xi \frac{\dot{\Delta}}{\Delta^{3 / 2}}+\frac{\kappa \xi}{4}\left[21 \frac{\dot{\Delta}^{2}}{\Delta^{9 / 2}}-\frac{\left(\dot{\Theta}-\dot{X}_{\mathrm{G}}\right)^{2}}{\Delta^{7 / 2}}-\frac{15}{2} \frac{\ddot{\Delta}}{\Delta^{7 / 2}}\right]=0 \\
& \ddot{\Theta}+\frac{4 \varepsilon \xi}{3} \frac{\dot{\Theta}}{\sqrt{\triangle}}+\frac{\kappa \varepsilon \xi}{3}\left[\frac{19}{4} \frac{\dot{\theta} \dot{\theta}}{\Delta^{7 / 2}}-\frac{\dot{\Delta \dot{X}_{\mathrm{G}}}}{\Delta^{7 / 2}}+\frac{1}{2} \frac{\ddot{X}_{G}-\ddot{\Theta}}{\Delta^{5 / 2}}\right]=0
\end{aligned}
$$

T. Salez, and L. Mahadevan, J. Fluid Mech. 2015, 779, 181-196

$$
\dot{v}=-\gamma v+\delta F / m
$$

P. Langevin, Compt. Rendus 1908, 146, 530-533.
$\begin{aligned} \text { Langevin equation } \rightarrow v(t) & \rightarrow\left\langle v^{2}(t)\right\rangle\end{aligned} \rightarrow$ noise amplitudes $\begin{aligned} & \stackrel{\nu}{\langle v(0) v(t)\rangle} \rightarrow \text { mean square displacement (MSD) } \\ & \text { diffusion coefficients }\end{aligned}$
\odot Modified fluctuation-dissipation relation
\dot{v}_{i} coefficients \longrightarrow mass matrix $M_{\alpha \beta}(\kappa, \Delta)$
real mass $m_{i} \longrightarrow \longrightarrow$ effective friction $\gamma_{\mathrm{eff}}(\kappa, \Delta)$
v_{i} coefficients \longrightarrow friction matrix $\gamma_{\alpha \beta}(\kappa, \Delta)$

$$
\gamma_{\mathrm{eff}}=M_{\alpha \beta}^{-1} \cdot m_{\alpha} \cdot \gamma_{\alpha \beta}
$$

\odot Modified fluctuation-dissipation relation
\dot{v}_{i} coefficients \longrightarrow mass matrix $M_{\alpha \beta}(\kappa, \Delta)$
$\begin{aligned} & \text { real mass } m_{i} \longrightarrow \text { effective friction } \gamma_{\text {eff }}(\kappa, \Delta) \\ & v_{i} \text { coefficients } \longrightarrow \text { friction matrix } \gamma_{\alpha \beta}(\kappa, \Delta)\end{aligned}$

$$
\gamma_{\mathrm{eff}}=M_{\alpha \beta}^{-1} \cdot m_{\alpha} \cdot \gamma_{\alpha \beta}
$$

$$
\begin{aligned}
v_{i}=v_{i 0}+\kappa \cdot v_{i 1} & \longrightarrow\left\langle v_{i 0} v_{i 1}\right\rangle(t, \kappa) \longrightarrow \\
\gamma_{i} & =\gamma_{i 0}(\Delta)+\kappa \cdot \gamma_{i 1}(\Delta) \longrightarrow \text { noise correlator amplitude } \\
\delta F_{i}=\delta F_{i 0}+\kappa \cdot \delta F_{i 1} & \longrightarrow\left\langle\delta F_{i 0} \delta F_{i 1}\right\rangle(\kappa)
\end{aligned}
$$

$$
\left\langle\delta F_{i}\left(\tau_{1}\right) \delta F_{i}\left(\tau_{2}\right)\right\rangle \propto 2 k_{\mathrm{B}} T m_{i} \gamma_{i 0} \delta\left(\tau_{1}-\tau_{2}\right) \cdot\left[1-\kappa \cdot \frac{\gamma_{i 1}(\triangle)}{\gamma_{i 0}(\triangle)}\right]
$$

- Simulation with fixed height (Δ) - Effect of a rigid wall $(\kappa=0)$

$$
\begin{gathered}
\epsilon=0.1 \quad \xi=1.0 \quad \Delta \equiv \Delta(0) \\
X_{\mathrm{G}}(0)=\dot{X}_{\mathrm{G}}(0)=\Theta(0)=\dot{\Theta}(0)=0
\end{gathered}
$$

At long time:
$\left\langle\Delta X_{\mathrm{G}}^{2}\right\rangle \propto 2 D(\kappa, \Delta) \Delta T$
$\log \left\langle\Delta X_{\mathrm{G}}^{2}\right\rangle=\log \Delta T+\log D(0, \Delta)+C$

- Simulation with fixed height (Δ) - Effect of a rigid wall $(\kappa=0)$

$$
\begin{gathered}
\epsilon=0.1 \quad \xi=1.0 \quad \Delta \equiv \Delta(0) \\
X_{\mathrm{G}}(0)=\dot{X}_{\mathrm{G}}(0)=\Theta(0)=\dot{\Theta}(0)=0
\end{gathered}
$$

At long time:
$\left\langle\Delta X_{\mathrm{G}}^{2}\right\rangle \propto 2 D(\kappa, \Delta) \Delta T$
$\log \left\langle\Delta X_{\mathrm{G}}^{2}\right\rangle=\log \Delta T+\log D(0, \Delta)+C$

- Simulation with fixed height (\triangle) - Effect of a rigid wall $(\kappa=0)$

$$
\begin{gathered}
\epsilon=0.1 \quad \xi=1.0 \quad \Delta \equiv \Delta(0) \\
X_{G}(0)=\dot{X}_{G}(0)=\Theta(0)=\dot{\Theta}(0)=0
\end{gathered}
$$

At long time:
$\left\langle\Delta X_{G}^{2}\right\rangle \propto 2 D(\kappa, \Delta) \Delta T$
$\log \left\langle\Delta X_{\mathrm{G}}^{2}\right\rangle=\log \Delta T+\log D(0, \Delta)+C$

- Simulation with fixed height (Δ) - Effect of a rigid wall $(\kappa=0)$

$$
\begin{gathered}
\epsilon=0.1 \quad \xi=1.0 \quad \Delta \equiv \Delta(0) \\
X_{\mathrm{G}}(0)=\dot{X}_{\mathrm{G}}(0)=\Theta(0)=\dot{\Theta}(0)=0
\end{gathered}
$$

At long time:
$\left\langle\Delta X_{G}^{2}\right\rangle \propto 2 D(\kappa, \Delta) \Delta T$
$\log \left\langle\Delta X_{\mathrm{G}}^{2}\right\rangle=\log \Delta T+\log D(0, \Delta)+C$

- Simulation with fixed height (Δ) - Effect of a rigid wall $(\kappa=0)$

$$
\begin{gathered}
\epsilon=0.1 \quad \xi=1.0 \quad \Delta \equiv \Delta(0) \\
X_{\mathrm{G}}(0)=\dot{X}_{\mathrm{G}}(0)=\Theta(0)=\dot{\Theta}(0)=0
\end{gathered}
$$

At long time:
$\left\langle\Delta X_{G}^{2}\right\rangle \propto 2 D(\kappa, \Delta) \Delta T$
$\log \left\langle\Delta X_{\mathrm{G}}^{2}\right\rangle=\log \Delta T+\log D(0, \Delta)+C$

- Simulation with fixed height (Δ) - Effect of compliance $(\kappa \neq 0)$

$$
\begin{aligned}
& \epsilon=0.1 \quad \xi=1.0 \quad \Delta \equiv \Delta(0) \\
& X(0)=\dot{X}(0)=\Theta=\dot{\Theta}=0 \\
& \log \left\langle\Delta X_{\mathrm{G}}^{2}\right\rangle=\log \Delta T+\log D(\kappa, \Delta)+C \\
& D(\kappa, \Delta)=D(0, \Delta)\left[1-\kappa \cdot \frac{\gamma_{i 1}(\Delta)}{\gamma_{i 0}(\Delta)}\right] \\
& \log \left\langle\Delta X_{\mathrm{G}}^{2}\right\rangle=\log \Delta T+\log D(0, \Delta) \\
& +\log \left[1-\kappa \cdot \frac{\gamma_{i 1}(\Delta)}{\gamma_{i 0}(\Delta)}\right]+C
\end{aligned}
$$

- Simulation with fixed height (Δ) - Effect of compliance $(\kappa \neq 0)$

$$
\begin{aligned}
& \epsilon=0.1 \quad \xi=1.0 \quad \Delta \equiv \triangle(0) \\
& X(0)=\dot{X}(0)=\Theta=\dot{\Theta}=0 \\
& \log \left\langle\Delta X_{\mathrm{G}}^{2}\right\rangle=\log \Delta T+\log D(\kappa, \Delta)+C \\
& D(\kappa, \Delta)=D(0, \Delta)\left[1-\kappa \cdot \frac{\gamma_{i 1}(\triangle)}{\gamma_{i 0}(\triangle)}\right] \\
& \log \left\langle\Delta X_{\mathrm{G}}^{2}\right\rangle=\log \Delta T+\log D(0, \Delta) \\
& +\log \left[1-\kappa \cdot \frac{\gamma_{i 1}(\triangle)}{\gamma_{i 0}(\triangle)}\right]+C
\end{aligned}
$$

- Simulation with unfixed \triangle - Electrostatic repel of rigid wall $(\kappa=0)$

$$
\begin{aligned}
& \uparrow U_{\mathrm{e}}=k_{\mathrm{B}} T \cdot B \exp \left(-\frac{\Delta}{\ell_{D}}\right) \\
& \downarrow U_{\mathrm{g}}=m g \Delta
\end{aligned}
$$

- Simulation with unfixed \triangle - Effect of compliance $(\kappa \neq 0)$

$$
\begin{array}{lll}
\epsilon=0.1 & \xi=1.0 & X(0)=\dot{X}(0)=0 \\
\bar{D}(\kappa)=\int_{z_{\min }}^{z_{\max }} P(\Delta) D(\kappa, \Delta) \mathrm{d} \Delta \\
D(\kappa, \Delta)=D(0, \Delta)\left[1-\kappa \cdot \frac{\gamma_{i 1}(\Delta)}{\gamma_{i 0}(\Delta)}\right] & \log \left\langle\Delta X_{G}^{2}\right\rangle=\log \Delta T+\log \bar{D}(\kappa)+C
\end{array}
$$

Summary

- Noise-correlator amplitude affected by soft surface:

$$
\left\langle\delta F_{i}\left(\tau_{1}\right) \delta F_{i}\left(\tau_{2}\right)\right\rangle \propto 2 k_{\mathrm{B}} T m_{i} \delta\left(\tau_{1}-\tau_{2}\right) \cdot\left(\gamma_{i 0}-\kappa \cdot \gamma_{i 1}\right)
$$

- Less time consumed to enter the diffusive region;
- Diffusion coefficients affected by softer surface;

$$
D(\kappa, \Delta)=D(0, \Delta)\left[1-\kappa \cdot \frac{\gamma_{i 1}(\Delta)}{\gamma_{i 0}(\Delta)}\right]
$$

Perspective

V. Bertin, et al. J. Fluid Mech. 2022, 933, A23.

M. Lavaud, et al. Phys. Rev. Res. 2021, 3(3), L032011.

Acknowledgements

EMetBrown Group @ LOMA, Univ. Bordeaux
université
BORDEAUX
OMA
ENS
ENS PSL太
cnrs anr ${ }^{\circ}$
erc

Contact: yilin.ye@ens.psl.eu

