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    Figure  1 .     Schematic of the known pathways for intracellular uptake of nanoparticles.  

properties, and hence may also determine the processes of 
cellular uptake. For example, the uptake of gold nanoparti-
cles in HeLa cells varies with their size. [  70  ,  71  ]  The internaliza-
tion of Herceptin–collidal gold nanoparticles (ranging from 
2 to 100 nm) highly depends on their size: the most effi cient 
uptake occurs in the size range of 25–50 nm, which is due to 
the direct balance between the multivalent crosslinking of 
membrane receptors and the process of membrane wrapping 
involved in receptor-mediated endocytosis. [  61  ]  It is worthy of 
note that some metallic nanomaterials like iron oxide nano-
particles are stable in the extracellular environment, but show 
signifi cant clustering after endocytosis. This intraendosomal 
aggregation was found to enhance their magnetic properties 
and lead to better magnetic resonance imaging contrast. [  72  ]  
Though no similar report has been written so far on gold 
nanoparticles, this directly concerns the underlying mecha-
nism for endocytosis. 

 The shape of the nanoparticle is another important 
factor that directly affects its uptake pathway. Also taking 
the example of Au nanoparticles, we studied the infl uence 
of the geometrical aspect of Au nanorods (NRs) on their 
cellular uptake, [  21  ]  and found that the cellular uptake of Au 
NRs was highly shape-dependent: fewer longer NRs are 
internalized as compared with shorter NRs with similar sur-
face charges ( Figure    2  ). Spherical nanoparticles of similar 
sizes entered cells more easily than rod-shaped Au parti-
cles, which is mainly attributed to the longer membrane-
wrapping time required for the rod-shaped particles. [  43  ] 

      2.2.2. Carbon-Based Nanomaterials 

  Because of the very small size, polymer nanoparticles 
may enter cells directly through penetrating the cell mem-
brane with the possibility of interfering with important cell 
functions. [  72  ]  The internalization of nanoparticles can occur 
in a variety of ways, where the particle size or aggregate 

state largely infl uences their endocytic processes and cellular 
uptake ability (see Table  1 ). [  27–29  ,  71  ,  73  ,  74  ]  Specialized phagocytic 
cells, such as tissue macrophages and leukocytes in the blood, 
can generally uptake larger particles, [  47  ,  48  ]  where the tremen-
dous number of nanosized particles may directly impair or 
forfeit phagocytosis. As discussed in the previous section, 
smaller particles ranging from a few to several hundred 
nanometers are mainly internalized by pinocytosis. Caveolae-
mediated endocytosis was demonstrated to be the main inter-
nalization pathway for the 150–200 nm cylindrical particle 
replication in nonwetting templates (PRINT) particles and 
not for those particles larger than 1  µ m. [  74  ]  For larger particles 
or aggregated particles, macropinocytosis was reported as an 
endocytic pathway that accompanies the inducible membrane 
ruffl ing to form macropinosomes or phagosomes from 0.2 to 
2  µ m. [  52  ,  62  ,  75  ]  Most nanoparticles used for biomedical pur-
poses have a size distribution, not a uniform size, therefore, 
a given type of nanoparticle can employ multiple endocytic 
routes depending on its size. Carboxyl-modifi ed fl uorescent 
polystyrene nanoparticles of 24 nm in diameter were able to 
enter HeLa cells via nonclassical (clathrin-, caveolin-, and 
cholesterol-independent) pathways, while chemically iden-
tical nanoparticles of 43 nm entered cells predominantly via 
clathrin-mediated endocytosis. [  29  ]  

 Additionally, the effi ciency of cellular uptake also appears 
size-dependent. For the caveolae-mediated pathway, the 
caveolae size restricts the internalization of larger nanoparti-
cles. [  27–29  ]  The cellular uptake rate of layered double-hydroxide 
nanoparticles as drug-delivery vehicles highly depends on 
particle size: particles in the range of 50–200 nm were selec-
tively internalized by cells through clathrin-mediated endo-
cytosis with enhanced permeability and retention, and their 
cellular uptake effi ciency follows the order: 50  >  200  ≥  100  >  
350 nm. [  76  ]  The uptake quantity of 20 and 40 nm albumin-
coated nanoparticles was 5–10 times greater than that of 
100 nm particles. [  27  ]  The smaller nanoparticles were strongly 
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 (a) 

 

  
Figure 1. (Top left): A cut of the pulmonary acinus exhibits a complex microstructure that 
determines the oxygen capture by blood and thus controls human respiration (credits to E. 
Weibel). (Top right) A geometric model of a multiscale porous medium (the Menger sponge). 
(Bottom left) A random trajectory of a bioactive molecule (in green) towards a protein (in red) 
through a network of actin filaments (in light blue). (Bottom right) A particle diffusing near a 
reactive surface exhibits numerous encounters with that surface. 

 

  

? Efficient numerical implementation of the
“encounter-based approach” in complex media.

◦ Understanding of respective roles of complex environment and
various surface reaction mechanisms.

◦ Identifying experimental settings for comparisons.

◦ New applications of this approach in chemistry and biology.
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Theoretical Background

Diffusion process
Consider the random trajectory xt of a particle with external
force F(x) at temperature T :

dxt =
D

kBT
F(xt)dt +

√
2DdWt (1)

where Wt is a standard Brownian motion, D is the diffusion
coefficient, and kBT represents thermal energy of the bath.

F(x) should be non-zero only near the boundary, forcing the
particle to move away from the boundary back to the interior,
like

F(x)

kBT
=

1

ε
n(x)I∂Ωε(x) (2)

where n(x) is the normal vector to the boundary ∂Ω, and ∂Ωε

refers to the boundary layer of width ε, inside which the force
F(x) acts.

J. Perrin, in Atoms, London: Constable 1914, pp. 115.
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Theoretical Background Complex boundary

Koch snowflakes

Given a segment with length L, we insert three points with angle α ∈ (0, π):

Parameters:
Polygon shape Angle α, Direction (concave +, convex −), Level of generation g .

Figure: Koch snowflakes 3 π/3 − g
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Theoretical Background Encouter

Harmonic measure

Let Ω be a bounded open domain in n-dimensional Euclidean space Rn, n ≥ 2,
and let ∂Ω denote the boundary of Ω. Any continuous function f : ∂Ω→ R
determines a unique harmonic function u that solves the Dirichlet problem:

{
∆u(x) = 0, x ∈ Ω

u(x) = f (x), x ∈ ∂Ω

If a point x ∈ Ω is fixed, u(x) determines a measure ωx(E ) on ∂Ω by

{
∆ωx(E ) = 0, x ∈ Ω

ωx(E ) = IE (x), x ∈ ∂Ω
IE (x) =

{
1, x ∈ E

0, 0 /∈ E

The measure ωx(E ) is called the harmonic measure.
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Theoretical Background Encouter

Reactivity & Boundary local time

• Local time `t characterizes the number of encounters with the boundary.

• Surface reaction occurs when `t exceeds a random threshold ˆ̀

characterized by Ψ(`) = P
{
` < ˆ̀

}
:

? standard surface reactions with constant reactivity q: Ψ(`) = e−q`;
? various surface reactions (activation, passivation, etc): arbitrary Ψ(`);

• This approach was only applied in simple confinements like sphere.

D. S. Grebenkov, Phys. Rev. Lett., 2020, 125, 078102
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Numerical Simulations Perfect reactivity

Brownian motion as Markov-chain Monte Carlo

δ = 2D∆t = constant

∆xi , ∆yi = N (0, δ)

r = constant, θi = ran(0, 2π)

∆xi = r cos θi , ∆yi = r sin θi

NOT efficient for precise results if r � lg = L/3g .
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Numerical Simulations Perfect reactivity

Geometry-adapted fast random walk (GAFRW)

ri 6= constant, θi = ran(0, 2π)
• Calculate distances between the

particle and boundary segments at
each step.

• Determine the radius as the
minimum one of all distances.

• Jump uniformly towards a new
position.

• Repeat this process until the
particle is attached on the
boundary.

? Improvement:
Only search among relevant
intervals.

M. E. Muller, Ann. Math. Statist., 1956, 27, 569-589
D. S. Grebenkov, et al. Phys. Rev. E, 2005, 71(5), 056121
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Numerical Simulations Perfect reactivity

Hitting probability distribution

No. Segment

• 1st: Red

• 2nd: Green

• 3rd: Black
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Numerical Simulations Partial reactivity

After the first arrival ...

There are three relevant choices to stop our numerical simulations:

◦ Stop the simulation after a given time T .

◦ Stop the simulation after a random time δ, such that P(δ > t) = e−pt , where
t is time passed for diffusion.

• Stop the simulation when the boundary local time `t exceeds a random
threshold ˆ̀.

We focus on the third choice and take the threshold ˆ̀ with the probability:

P{` < ˆ̀} = e−q`

where q is the reactivity parameter. In practice, we can generate the threshold ˆ̀

as ˆ̀ = − ln[ran(0, 1)]/q.
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Numerical Simulations Partial reactivity

Encounter-based reflection

Monte Carlo simulation of the boundary local time

Denis S. Grebenkov1, ⇤

1Laboratoire de Physique de la Matière Condensée,
CNRS – Ecole Polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France

(Dated: May 4, 2023)

We implement the walk-on-spheres (WOS) algorithm
for simulating reflected Brownian motion and the associ-
ated boundary local time `t. For this purpose, we intro-
duce a thin boundary layer @⌦" of width ✏ and distinguish
two situations. If the current position xk of the particle
is outside the layer @⌦", one computes the distance ⇢ to
the boundary; in turn, if the current position is inside
the layer, we set ⇢ = 2" (we can discuss later the choice
of the factor 2 here). After that, one executes a jump to
the circle of radius ⇢: : xk+1 = xk + ⇢(cos ✓k, sin ✓k)†,
where ✓k is a uniformly distributed random variable be-
tween 0 and 2⇡. The time counter is incremented by
� = ⇢2/(4D): tk+1 = tk + �. If this jump leaves the
particle outside the confining domain, one performs a
mirror reflection with respect to the boundary (alterna-
tively, one can simply move the particle to the closest
boundary point). This event is considered as reflection
on the boundary and thus increments the boundary local

time as

`tk+1
= `tk

+
p
⇡/2

p
D� (1)

FIG. 1. Illustration of several step of the WOS algorithm.

[1] Y. Zhou, W. Cai, and E. Hsu, Computation of the local
time of reflecting Brownian motion and the probabilistic

representation of the Neumann problem, Comm. Math.
Sci. 15, 237-259 (2017).

⇤ denis.grebenkov@polytechnique.edu

~xk+1 = ~xk + ρk(cos θk , sin θk)

〈τk〉 =
ρ2
k

4D

tk+1 = tk + 〈τk〉

`tk+1
= `tk +

√
π

2
· D · 〈τk〉·I∂Ωε ·INtouch>0

• Fix a radius ρk to be a constant ρ, e.g. a
value proportional to the boundary layer
thickness ε.

• Execute a uniform jump on the circle with
this given radius ρ towards a new position.

• Once the new position is out of the
domain, we reflect this position with
boundary ∂Ω for another location inside
the domain.

• Repeat this procedure until the particle
exit the boundary layer ∂Ω, then we take
standard GAFRW.

Y. Zhou, et al. Commun. Math. Sci., 2017, 15(1), 237-259
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Numerical Simulations Partial reactivity

Verification on circle

We take a simple domain, a circle with radius R = 1, and we put each particle at
(r0, 0) initially. For a disk, the spread harmonic measure density is known
explicitly, and one can compute the hitting probability of any arc.

pk =
1

N
+
∞∑

j=1

2qr j0
πj(j + q)

sin

(
πj

N

)
cos

(
2πj

N
(k − 1

2
)

)
(15)

D. S. Grebenkov, Phys. Rev. E, 2015, 91(5), 052108
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Numerical Simulations Partial reactivity

Choice of ρ ∝ ε

Anti-clockwise
k-th segment
∈ 2π

N (k − 1, k)

We should
select ρ = 2ε!
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Numerical Simulations Partial reactivity

Effects of initial positions r0

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0  10  20  30  40  50  60

P
ro

b
a
b
ili

ty

No. Segment

Diffusion on Circle (q=1, N=10
6
, θ0=0.0)

ana. r0=0.9
num. r0=0.9
ana. r0=0.7
num. r0=0.7
ana. r0=0.5

num. r0=0.5
ana. r0=0.3
num. r0=0.3
ana. r0=0.1
num. r0=0.1

Yilin YE ICFP M2 Internship Defence July 5, 2023 15 / 19



Numerical Simulations Partial reactivity

Effects of reactivity parameter q

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0  10  20  30  40  50  60

P
ro

b
a

b
ili

ty

No. Segment

Diffusion on Circle (N=10
6
, r0=0.9, θ0=0.0)

ana. q=0.1
num. q=0.1

ana. q=1
num. q=1

ana. q=10
num. q=10

Yilin YE ICFP M2 Internship Defence July 5, 2023 16 / 19



Numerical Simulations Partial reactivity

Practice on Koch snowflake

Large domain
3 π/3− 2
L = 103

q = 1
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Numerical Simulations Partial reactivity

Practice on Koch snowflake

Probably trapped in the corner?
Jump uniformly from the corner.

Small domain, L = 2.
3 π/3− g , q = 1
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Conclusion & Perspectives
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• Realize GAFRW in Koch snowflakes (3 π/3− g) for harmonic measure.

• Realize “Encounter-based reflection” for spread harmonic measure.

◦ Step further towards other complex boundaries, like α 6= π/3, or even in 3D.

◦ Look forward to comparisons with experiment.
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Figure 1. (Top left): A cut of the pulmonary acinus exhibits a complex microstructure that 
determines the oxygen capture by blood and thus controls human respiration (credits to E. 
Weibel). (Top right) A geometric model of a multiscale porous medium (the Menger sponge). 
(Bottom left) A random trajectory of a bioactive molecule (in green) towards a protein (in red) 
through a network of actin filaments (in light blue). (Bottom right) A particle diffusing near a 
reactive surface exhibits numerous encounters with that surface. 

 

  

Thanks for your attention!



Appendix Internship M2S2 @ PMC

Complex boundary - Koch snowflakes

Given a segment with length L, we insert three points with angle α ∈ (0, π):

Four black segments have the same length l , red dashed line for d , we have

{
d2 = l2 + l2 − 2l2 cosα

d + 2l = L
(3)

and thus the solution reads:




l =
L√

2(1− cosα) + 2

d =

√
2(1− cosα)L√

2(1− cosα) + 2

(4)
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Appendix Internship M2S2 @ PMC

Diffusion region

We only consider the first case: particles inside the convex boundary.
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Appendix Internship M2S2 @ PMC

Comparison of different algorithms
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Appendix Internship M2S2 @ PMC

Dirichlet problem

In mathematics, a Dirichlet problem is the problem of finding a function which
solves a specified partial differential equation (PDE) in the interior of a given
region that takes prescribed values on the boundary of the region.

The Dirichlet problem can be solved for many PDEs, although originally it was
posed for Laplace’s equation. In that case the problem can be stated as follows:

Given a function f that has values everywhere on the boundary of a
region in Rn, is there a unique continuous function u twice continuously
differentiable in the interior and continuous on the boundary, such that u
is harmonic in the interior and u = f on the boundary?

This requirement is called the Dirichlet boundary condition. The main issue is to
prove the existence of a solution; uniqueness can be proved using the maximum
principle.
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Appendix Internship M2S2 @ PMC

Harmonic function

In mathematics, mathematical physics and the theory of stochastic processes, a
harmonic function is a twice continuously differentiable function f : U → R,
where U is an open subset of Rn, that satisfies Laplace’s equation, that is,

∂2f

∂x2
1

+
∂2f

∂x2
2

+ · · · ∂
2f

∂x2
n

= 0

everywhere on U. This is usually written as

∇2f = 0 or ∆f = 0
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Appendix Internship M2S2 @ PMC

Boundary local time

dXt =
D

kBT
F(Xt)dt +

√
2DdWt

F(X) should be zero inside Ω, except for a very thin boundary layer of width a, in
which F(X) should force the particle to move away from the boundary back to the
interior.

F(X)

kBT
=

1

a
n(X)I∂Ωa(X)

`at =
D

a

∫ t

0

dt ′I∂Ωa(Xt′)

Langevin equation takes the form

dXt = n(X)d`at +
√

2DdWt

a
D `

a
t is the residence time inside the boundary layer ∂Ωa up to time t.

`t = lim
a→0

`at
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Appendix Internship M2S2 @ PMC

The boundary local time `t can also be related to the number N a
t of crossings of

the boundary layer ∂Ωa.
`t = lim

a→0
aN a

t

2

FIG. S1: Simulated random trajectory (blue line) of re-
flected Brownian motion Xt on the half-line ⌦ = (0,1) (ver-
tical axis) and two approximations `at (red solid line) and
a N a

t (gray dotted line) of the boundary local time `t at the
origin, all plotted as functions of time t. Shadowed region
outlines the zone when the particle di↵uses inside the bound-
ary layer @⌦a = (0, a) near the origin (@⌦ = {0}). Yellow

down-pointing triangles indicate the hitting times �
(0)
n when

the particle downcrossed the boundary layer; in turn, green

up-pointing triangles show the hitting times �
(a)
n when the

particle left the boundary layer after crossing. Note that Xt,
`at and a N a

t are rescaled to the same maximum for easier
visualization.

the Langevin equation takes the form

dXt = n(Xt) d`at +
p

2D dWt. (S4)

By definition, (a/D)`at is the residence (or occupation)
time of the process Xt inside the boundary layer @⌦a up
to time t. As the boundary layer is getting thinner (a !
0), its volume and thus the residence time in @⌦a vanish.
However, the rescaling by 1/a ensures a nontrivial limit,

`t = lim
a!0

`at , (S5)

while the above Langevin equation yields the stochastic
Skorokhod equation

dXt = n(Xt) d`t +
p

2D dWt. (S6)

The stochastic process `t is called the boundary local
time. Even though `t has units of length (due to the
factor D/a in Eq. (S3)), it can still be thought of as a
fraction of time that reflected Brownian motion spent in
an infinitesimal vicinity of the boundary up to time t. By
construction, the first term in Eq. (S6) is nonzero only
when Xt is on the boundary (to highlight this property,
the indicator function I@⌦(Xt) is sometimes included ex-
plicitly to the first term). We hasten to stress that this is
not a rigorous derivation of the Skorokhod equation but
rather its intuitive physical explanation.

The boundary local time `t can also be related to the
number N a

t of (down)crossings of the boundary layer @⌦a

by reflected Brownian motion up to time t. This number
can be defined by introducing a sequence of interlacing

hitting times 0  �
(0)
1 < �

(a)
1 < �

(0)
2 < �

(a)
2 < . . . as

�(0)n = inf{t > �
(a)
n�1 : Xt 2 @⌦}, (S7a)

�(a)
n = inf{t > �(0)n : Xt 2 �a}, (S7b)

(with �
(0)
0 = �

(a)
0 = 0), where �a = {x 2 ⌦ : |x� @⌦| =

a} (see, e.g., [6]). Here, one records the first moment �
(0)
1

when reflected Brownian motion hits the boundary @⌦,

then the first moment �
(a)
1 of leaving the thin layer @⌦a

through its inner boundary �a, then the next moment

�
(0)
2 of hitting the boundary @⌦, and so on. The number

of downcrossings of the thin layer @⌦a up to time t is

then the index n of the largest hitting time �
(0)
n , which is

below t:

N a
t = sup{n � 0 : �(0)n < t}. (S8)

While the number of downcrossings diverges as a ! 0,
its rescaling by a yields the boundary local time [1, 2]:

`t = lim
a!0

a N a
t . (S9)

As the number of encounters of the process Xt with the
boundary layer @⌦a up to time t can be naturally identi-
fied with the number N a

t of its downcrossings, the bound-
ary local time divided by the layer width, `t/a, is a proxy
of the number of encounters, as soon as a is small enough.
Note that the approximations a N a

t and `at are closely re-
lated. Indeed, the residence time in Eq. (S3) can be split
into separate contributions associated to each downcross-
ing, and each contribution is of the order a2/D (the av-
erage time spent by reflected Brownian motion in a thin
boundary layer @⌦a).

By construction, the boundary local time `t is a non-
decreasing stochastic process, which remains 0 until the
first encounter with the boundary. After that, `t in-
creases by tiny (infinitely small) jumps at every encounter
with the boundary. These increments can also be inter-
preted as increases of the residence time spent near the
boundary. In turn, the time interval between two suc-
cessive jumps in `t can be either small, or large. In fact,
reflected Brownian motion hitting a smooth surface is
known to return infinitely many times to that surface
within an infinitely short time period [11]. Even if each
of these returns gives a tiny increment to the boundary
local time, their huge number results in notable changes
of `t. In contrast, when the particle di↵uses inside the
domain, the boundary local time remains constant until
the next hit.

Figure S1 illustrates two approximations `at and a N a
t

of this process for reflected Brownian motion on a half-
line. One can see that `at increases gradually due to its
integral form (S3), whereas a N a

t changes by jumps of
height a at each downcrossing of the boundary layer.
While these approximations behave quite di↵erently for
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Appendix Internship M2S2 @ PMC

Reactivity q

On the partially reactive region ∂ΩR

−D∂nc(x, t) = κ0c(x, t)

where D is the diffusion coefficient of particles, ∂n is the normal derivative on the
boundary oriented outwards the confining domain, and κ0 is the reactivity of the
region.
If the particle attempts to react independently on each encounter with probability

p ' aκ0/D � 1

the probability of no surface reaction up to the n-th encounter is

1−
n∑

k=1

p(1− p)k−1 = (1− p)n ' e−pn ' e−q`

where q = κ0/D, ` = na; a is a small width of the reactive layer. Thus we write

Ψ(`) = P
{
` < ˆ̀

}
=

∫ ∞

`

d`′ψ(`′) = e−q`
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Yilin YE ICFP M2 Internship Defence July 5, 2023 19 / 19



Appendix Internship M2S2 @ PMC

Random threshold ˆ̀

For the continuous distribution π(x), we have the cumulative distribution as:

Π(x) = Π(x − dx) + π(x)dx =

∫ x

−∞
π(x)dx (A1)

Working with normalized π(x), the possible value of Π, which we call Υ, is a
uniform distribution on (0,1). Let Π−1 be the inverse function of Π, then the
random number x = Π−1(Υ) is distributed as π(x). The tricky step is usually to
find Π−1.
In our case, the local time threshold is a function of reactivity q, with the
distribution as ψ(`) = qe−q`, then we compute the cumulative distribution

Π(`) =

∫ `

0

ψ(x)dx = 1− e−q` = Υ = ran(0, 1) (A2)

Then ` = Π−1(Υ) = − ln(1−Υ)/q. Since both Υ and 1−Υ are ran(0,1), we
have the random threshold as

ˆ̀ = −q ln [ran(0, 1)] (A3)
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Appendix Internship M2S2 @ PMC

Spread harmonic measure on circle

Inside a disk of radius R and center at origin, we consider a particle with initial
position (r0, θ0) and its diffusion. Define the probability density ωq such that a
particle is attached on the circle (R, θ) finally:

ωq(θ|r0, θ0) =
1

2πR
×



1 + 2

∞∑

j=1

( r0
R

)j cos [j(θ − θ0)]

1 + j
qR



 (A4)

There is no segment for continuous θ, so we divide the circle into N arcs in
numerical practice, such that θ ∈ [k − 1, k]× 2π

N , with k = 1, 2, 3, ...,N. The
hitting probability pk on k-th segment is thus expressed as the integration of
density ωq:

pk = R ×
∫ 2π

N k

2π
N (k−1)

ωq(θ|r0, θ0)dθ

= N +
∞∑

j=1

2qR

πj(j + qR)

( r0
R

)j
sin

(
πj

N

)
cos

[
j

(
2π

N
(k − 1

2
)− θ0

)] (A5)
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