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Part I

Molecular Simulation (Damien Laage)

1 Chpt 1. Introduction to Molecular Dynamics

References:
• Statistical Mechanics, Mark Tukerman, chapter 3,4,5
• Understanding Molecular Simulations, Frenkel & Smith

1.1 Molecular Dynamics Simulations

We could not get all hamiltonian ...

1.1.1 A brief history of MD

• WWII, Computer for numerical simulation;
• 1950s, chains of oscillators;
• 1967, Liquid of Argon;
• 1971, Liquid of water;
• 1976, proteins;
• 2011, HIV capacid;
• 2013, Nobel Prize!

We should find a balance among speed/size/cost, or just design one specific computer only for MD.

1.1.2 Key steps of simulations

This is another kind of experiments, know where to pay attention.
1. prepare initial configurations;
2. calculate energies and forces;
3. integrate experience of motion, namely trajectory;
4. calculate (average) properties;

1



1.1.3 A numerical approach for Stat. Mech.

In a micro-canonical ensemble

〈A〉 =
1/h

∫
dpdqA(p,q)δ [H(p,q) − E]

1/h
∫

dpdqδ [H(p,q) − E]

where the denominator is called the partition function

Ω(N,V,E) =
∫

dpdqδ [H(p,q) − E]

Only for very simple system, there would be analytical solutions; thus we turn to numerical
simulations. For some observables, they are hard to measure experimentally, then numerical ...
whose quality depends on what inputs.

1.1.4 Ergodicity

Main idea: Time average ∼ sample average Hamiltonian equations of motion

Ûq =
dq
dt
=
∂H

∂p
Ûp =

dp
dt
= −

∂H

∂q

Total energy is conserved dH
dt = 0.

Analogy for micro-canonical ensemble, sample micro states of energy E .
Ergodicity hypothesis: Given on infinite time, system of energy E can visit all configurations on
the constant energy hypersurface. Therefore, we address that micro-canonical ensemble average is
equal to time average.

〈A〉 =

∫
dpdqA(p,q)δ [H(p,q) − E]∫

dpdqδ [H(p,q) − E]
= lim

T→∞

1
T

∫ T

0
dt A [p(t),q(t)]

For example, it would be hard to move left to right due to the high energy barrier between. But
for high-freedom system, there would always be possible passways.

1.2 Starting point of MD Simulation

Position: Lattice, Random arrangement, Protein crystal structure

::::
How

:::
to

::::::::
simulate

::
a
::::
few

::::::
water

:::::::::::
molecules?

Droplet with strong boundary effect, it should keep all water molecules in the same condition.
Herein, we select the Periodical Boundary Condition, which is common for bulk simulation,

meaning that the same particle would appear at the same position with each box cell.
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::::
How

:::
to

:::::::::
simulate

:::
the

:::::::::::::
vaporisation

:::::::::
process? For instance, take vaporisation into consideration

still, there would be no molecule loss inside a closed system with water and vapor at the same time.
Velocity: for example, draw from Maxwell-Boltzmann distribution

1.3 Energy and force calculations

Namely approximate solution to Schrödinger equation. There are several modern treatments:
• Density Functional Theory (DFT);
• partition system in quantum/classical (QM/MM);
• Artificial Intelligence;

the most popular approach is the classical force fields.

U =
∑

i∈bonds

1
2

ki( ì − `
0
i )

2 +
∑

j∈angles

1
2

kθj (θ j − θ
0
j )

2 +
∑

m∈dihedral
kφm [1 − cos(nφ + δ)]

+
∑

i,j

{
qiq j

4πεi jri j
+ 4εi j

[(
σ

ri j

)12
−

(
σ

ri j

)6
]}

where the last termwith 4εi j is called Lenard-Jones potential. Indeed, 6 is derived from the physical
sense, while 12 is just derived for the sake of convenient calculation.

Since there would be too much parameters, we could ...
1. make fitting for coefficients
2. calculate them with DFT;
3. for AI, there are only a list of energies with configurations, hard to furnish analytical motion

for each time step, we should calculate force/potential/energy at each point. With forces described
as ®F = −®∇U, for pair potential ∝ N2.

1.4 Integrating the equations of motions

Too little step, longer time wasted; too large step, bigger calculation errors.

1.4.1 Verlet algorithm

We introduce Taylor series

®r(t + ∆t) = ®r(t) + ∆t Û®r(t) +
1
2
(∆t)2 Ü®r(t) + o(∆t2)

= ®r(t) + ∆t · ®v(t) +
1

2m
(∆t)2 · ®F(t) + o(∆t2)

®r(t + ∆t) = ®r(t) − ∆t · ®v(t) +
1

2m
(∆t)2 · ®F(t) + o(∆t2)
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thus if the system memorize two steps, we could calculate the next by

®r(t + ∆t) = 2®r(t) − ®r(t − ∆t) +
1
m
(∆t)2

Similarly, we have the velocity verlet

®r(t + ∆t) ' ®r(t) + ∆t · ®v(t) +
(∆t)2

2m
· ®F(t)

®v(t + ∆t) ' ®v(t) +
∆t
2m

[
®F(t) + ®F(t + ∆t)

]
1.4.2 Key property

Goal:
• stability (no drift of E);
• time-reversibility ®r(t) +∆t

−−−→ ®r(t+∆t)
−∆t
−−−→ ®r(t); however, the Euler algorithmmentioned above

is not time-reversible ...
• sympletic: conserve magnitude of volume elements in phase space

1.4.3 Liouville formation of time-reversible algorithem

Liouville operator
iL = Ûq

∂

∂q
+ Ûp

∂

∂p

for F(p,q), iL f = Ûf , thus we could make integration

f [p(t),q(t)] = eiLt f [p(0),q(0)]

however, L is also time-dependent.
Define two operators

iLq = Ûq
∂

∂q
iLq = Ûp

∂

∂p
let’s focus on iLq at first

f [p(0),q(0)] = eiLqt f (0) = f (0) + iLqt f (0) +
(iLqt)2

2!
f (0) + · · · =

∞∑
n=0

[ Ûq(0)t]n

n!
∂n

∂qn f (0)

= f [p(0),q(0) + Ûq(0)t]

namely iLq could shift position. Similarly, iLp could shift momenta. These two operators could
not commute,

eiLt , eiLpteiLqt
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However, we have Trotter identity

eA+B = lim
P→∞

[
eA/(2P)eB/PeA/(2P)

]P

suppose that ∆t = t/P,

exp
(
iLp
∆t
2

)
exp

(
iLq∆t

)
exp

(
iLp
∆t
2

)
∼ exp (iLt) = exp

[
i(Lp + Lq)t

]
Therefore,

f [p(0),q(0)]
+iLp∆t/2
−−−−−−−→ f

[
p(0) +

∆t
2
Ûp(0),q(0)

]
+iLq∆t
−−−−−→ f

[
p(0) +

∆t
2
Ûp(0),q(0) + ∆t · Ûq

(
∆t
2

)]
+iLp∆t/2
−−−−−−−→ f

[
p(0) +

∆t
2
Ûp(0) +

∆t
2
Ûp(∆t),q(0) + ∆t · Ûq

(
∆t
2

)]
so

p(0) → p(0) +
∆t
2
[F(0) + F(∆)]

q(0) → q(0) + ∆t · Ûq(0) +
(∆t)2

2m
F(0)

1.5 MD Simulation in different ensemble

1.5.1 "Constant temperature"

System in constant with thermostat (heat bath), we have Maxwell-Boltzman stat.

ρ(p) =
(
β

2m

)3/2
exp

(
−β

p2

2m

)
〈
p2〉 = 3m

β

〈
p4〉 = 15

(
m
β

)2 σ2
p〈

p2
〉2 =

〈
p4〉 − 〈

p2〉2〈
p2

〉2 =
2
3

and similarly we have
σ2

T〈
T2

〉2 =
2

3N

Hence, temperature does vary a little if N is large enough.
There exist some systems
• Andreson thermostat: random collision with heat bath;
• Nosé thermostat: extended Lagrangian, thus extend phase space, introduce coordinates +
momenta
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1.5.2 "Constant pressure"

We call NVT the canonical system, NVE the micro-canonical system.

1.6 A related simulation approach Monte Carlo

The main difference with molecular simulation is that Monte Carlo does not know about time.
It is a way to sample the phase space.

1.6.1 Importance Sampling

〈A〉 =

∫
dpdqA(p,q)e−βH(p,q)∫

dpdqe−βH(p,q)

with such an equation above, we have to sample all points in the phase space to get each A(p,q).
For Importance Sampling, we take

〈A〉 =
1
N

N∑
i=1

A(pi,qi)

1.6.2 Metropolis method

Goal: generate points with related probability of e−βH .
Here, we start from old configuration ®q, in order to generate new trial configuration ®q′, whose
physical meaning is needed propre step distance.

With MB distribution, (n: new and o: old) we need to enforce detailed balance which imposes

P(o→ n)
P(n→ o)

= e−β[U(n)−U(o)]

• if U(n) 6 U(o), the probability is equal to 1
• if U(n) > U(o), the probability is equal to e−β[U(n)−U(o)]

Numerically, pick a uniform random number x ∈ [0,1] and test if x < e−β[U(n)−U(o)].

1.7 Applications

1.7.1 Thermodynamics quantities

MC/MD, for heat capacity, surface tension, phase diagram, compressibility
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1.7.2 Structural properties

Radical Distribution function, each peak show the radius of each solution layer, the curve would
converge to the 1 finally.

1.7.3 Dynamical properties

MD, diffusion coefficient, viscosity, ...
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2 Chpt 2. Advanced Simulation Techniques

MD is great but there are several limitations
• system size & length of trajectory due to computer resource;
• classical force fields could not describe electron rearrangement, thus no chemical reaction;
• Not efficient to model barriers, need to force MD sample around the boundary;
• Free energies are difficult to calculate;

2.1 Free energy calculations

∆F = FB − FA = (−kBT ln QB) − (−kBT ln QA)

= −kBT ln
∫

dpdqe−β(K+UB)∫
dpdqe−β(K+UA)

= −kBT ln
ZB

ZA

ZB =

∫
dqe−βUB(q) =

∫
dqe−βUB(q)e+βUA(q)e−βUA(q) =

∫
dqe−β[UB(q)−UA(q)]e−βUA(q)

ZB

ZA
=

〈
e−β[UB(q)−UA(q)]

〉
A
=

∫
dqe−β[UB(q)−UA(q)]e−βUA(q)∫

dqe−βUA(q)

we sample at state A, which is only a little area in phase space. Thus we need A ∼ B, namely two
states approach.

2.2 Thermodynamics Integration

For continuous (adiabatic) switching from A to B, we pose the parameter λ ∈ [0,1]

U(q, λ) = (1 − λ)UA(q) + λUB(q)

Fλ = −kBT ln
∫

dpdqe−β[K+U(q,λ)] = −kBT ln Qλ

∂F
∂λ
= −

kBT
Qλ

∂Qλ

∂λ
= −

kBT
Zλ

∂Zλ
∂λ
= −

kBT
Zλ

∫
dq

(
−β

∂Uλ

∂λ

)
e−βUλ =

〈
∂Uλ

∂λ

〉
λ

∆F = FB − FA =

∫ 1

0
dλ
∂F
∂λ
=

∫ 1

0
dλ

〈
∂Uλ

∂λ

〉
λ

∆F =
∫ 1

0
〈UB −UA〉λdλ

with that we could calculate the pKa. Note we could only calculate the energy difference, instead
of the absolute value. Also, it is hard to calculate the entropy.
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2.2.1 Biased potential methods

We need reaction coordinates!

Umbrella sampling
• define coordinates,
• then bias potential energy with W

[
F(qN ), s∗

]
= k

2 [ f (q) − s]2, where s∗ is the target coordi-
nate

• run series of simulations biasing potential centered on qN that shift from sA to sB;
Pick a coordinate f (q) to go from A and B. We are biasing the original potential with an

additional term W [ f (q), s] = k [ f (q) − s]2 /2. However, biasing implies to modify the averaging
computation.

Probability along s in a biased simulations i, (q
f
−→ s, i is the index of the bias as there might be

many ) with Wi [ f (q), s] = k [ f (q) − si]
2 /2

Pi
b(s) = 〈δ [ f ( ®qi) − ®s]〉b =

∫
dqe−βU(q)e−βWq[ f (q),si]δ [ f (q) − si)]∫

dqe−βU(q)e−βWi[ f (q)i,si)]

=

∫
dqe−βU(q)e−βWq[ f (q),si)]δ [ f (q) − si)]∫

dqe−βU(q)
×

∫
dqe−βU(q)∫

dqe−βU(q)e−βWi[ f (q)i,si)]

=

〈
e−βWi[ f (q),si)]δ [ f (q) − s)]

〉〈
e−βWi[ f (q),si)]

〉 =
e−βWi(s,si) 〈δ [ f (q) − s]〉o
〈e−βWi[ f (q),si]〉o

=
e−βWi(s,si)p0(s)

const .indep.o f .s

F0(s) = −kBT ln p0(s) = −kBT ln
{

cpb(s)
exp [−βWi(s, si)]

}
= Fb(s) −Wi(s, si) + cst.

Thus you can bias, then sample to obtain Fb, then correct the bias and repeat with a different bias.
The choice of the strength of the added potential has an important influence on its effect: too soft
and it has no effect; too hard and the sampling window becomes too small; so many such samplings
will be needed, which required too much time.

Metadynamics Put small Gaussians (as penalty to avoid return the same position) to fill the
unknown potential surface, until the Gaussian be flat, we draw the complete surface by adding all
the Gaussians. * But it’s hard to know when to end or continue exit.

All these methods still have limitations. In particular, they accelerate the sampling only along
one coordinate that was picked. But there are many other coordinates! For example, take the

9



catalysis reaction of enzyme. There are diff. conformations for the protein, each of them having
diff. barriers for the reaction, so both coordinates (conformation and reaction) need be optimised.

Tempering approach For a chemical reaction, the probability of going through a barrier∝ e−
∆G
kBT ,

thus we could decrease ∆G or increase the temperature T in order to increase the probability.
Parallel tempering simulated replicas of the system at different temperatures. Periodically,

we will attempt to swap the coordinate between pairs of replicas at diff. temperatures, with an
acceptance probability. More exactly, the temperatures are swapped but the coordinates are kept
the same for each replica. (Lionel)

Difficult to reconstruct neighbor simulation, we could arrive all positions under one temperature
by adding extra heat going higher temperature. Need to put closer temperatures, low probability
between two states with big temperature difference.

2.3 Describe Chemical Reactions

Perform electron structure calculation at each temperature to obtain free energies.

2.3.1 ab-initio

ab-initio molecular dynamics = DFT (density functional theory) based on MD. This method
is quite expensive, at most for hundreds of atoms and one hundred picoseconds. Typically, this is
useful tom simulate the solvatation of a proton in water. However, it is much too costly for complex
systems such as a protein reaction.

2.3.2 QM/MM

QM/MM means quantum mechanics + molecular mechanics. The core of the system is solved
with quantum chemistry while the rest is simulated using molecular dynamics. This is well suited
for proteins for instance, where QM for enzymes, MM for the rest solvents/proteins.

Not discord the rest directly, for 1. rest structure could affect active sites; 2. possible charge
transfer...

H = HQM +HMM +HQM/MM

where the interaction part is based on Lenard-Jones potential.

10



2.4 Simulating Very Long Time

2.4.1 Coarse graining

group atoms together, namely united paticle. Proteins become a long string with beams. Faster
but not easily transferable

2.4.2 Multiple time steps

at least low then fast frequent scale.
• fast motions, short timestep
• slow motions, long timestep

11



3 Chpt 3. Time Correlation Functions

Ref: Tuckerman chpt 13; Chanlder chpt 8 "Introduction to Meca. Stat."

3.1 Non-equilibrium Stat. Mech.

For micro-mechanic system,
δv

〈v〉
'

1
√

N
the noise obey the Gaussian distribution

3.2 Definition of Time-Correlation Functoin

For observable A, 〈A〉 =
∫

dpdqρ(p,q)A(p,q), its variance σ2 = 〈A2〉− 〈A〉2 is still not dynam-
ical, since Gaussian could only furnish how the distribution is, but without time information. For
example, triangle oscillators with different frequencies would have the same Gaussian distribution.

Mathematically, 〈A(t)A(t + ∆t)〉 , 〈A(t)〉〈A(t + ∆t)〉, because of time correlation.
Definition: Time-Correlation Function (TCF)

cAB(∆t) = 〈A(0)B(∆t)〉 =
∫

dpdqρ(p,q)A(p,q) exp(iL∆t)(p,q)

with A,B two observables. Below are some properties

cAB(0) = 〈A(0)B(0)〉 = 〈AB〉

lim
∆t→∞

cAB(∆t) = lim
∆t→∞

〈A(0)B(∆t)〉 = 〈A〉〈B〉

where 〈· · · 〉 means time average. For auto-correlation cAA(∆t) = 〈A(0)A(∆t)〉.

cAA(∆t) =
1
N

N∑
i=1

A(ti)A(ti + ∆t)

it’s the function to describe how fast the system loses its memory.
Time-Correlation Function of fluctuations around average

δA(t) = A(t) − 〈A〉

cδAδA(t) = 〈δA(0)δA(t)〉 = 〈[A(0) − 〈A〉] · [A(t) − 〈A〉] = 〈A(0)A(t)〉 − 〈A(0)〉〈A〉

= 〈A(0)A(t)〉 − 〈A(0)〉〈A〉 − 〈A〉〈A(t)〉 + 〈A〉2

where we use the relation 〈A(t)〉 = 〈A〉.

12



3.3 Some properties of TCF

Only depend on time interval ∆t. At long decays, correlation is fast cAA(t) → 〈A〉2, max
amplitude (for auto-correlation) is at t = 0. For classical observable A, cAA is a real and even
function of time t.

cAA(t) = 〈A(0)A(t)〉 = 〈A(t)A(0)〉 = 〈A(0)A(−t)〉 = cAA(−t)

We introduce Correlation Time
τ =

∫ ∞
0

dt
〈δA(0)δA(t)〉
〈δA2〉

since cAA decay exponentially ∝ e−t/τ

3.4 Examples of TCF

3.4.1 Gas velocity auto-correlation

vx → c(t) = 〈vx(0)vx(t)〉

Initial value 
c(0) = 〈v2

x〉

1
2

mv2
x =

1
2

kBT
⇒ c(0) =

kBT
m

Ideal gas Ideal gas without interaction in an isolated system with the flat velocity curve, namely
the velocity would not change along time t. Thus for the auto-correlation function, it keeps the
initial value c(t) = c(0) = kBT

m .

Dilute gas There would be rare collisions: the velocity is constant by blocks (between each
collision). As a consequence, c(t) starts at kBT/m and decays to 0 at infinity. The shape between 0
and∞ is not quite known.

3.4.2 Harmonic oscillator

q(t) = q(0) cos(ωt)

hence the auto-correlation is also a periodic functionwith the same frequency, it also keepsmemory.
In reality, the envelope exponentially decays.
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3.4.3 Dopole moment of a diatomic molecule in a gas

〈 ®µ(0) · ®µ(t)〉 = µ2
0〈®v(0)®v(t)〉

vx(t) =
®µ · ®ex

µ0

3.5 Application to diffusion coefficient

We first introduce the probability p(®r, t) to find a particle in ®r at time t. Reminder, we have the
conservation law (like that from Hydrodynamics)

∂p(®r, t)
∂t

+ ®∇ · ®j(®r, t) = 0

also we have the Fick law of diffusion, where D is the coefficient of diffusion

®j(®r, t) = −D®∇p(®r, t)

this equation is not strictly obeyed, only empirical.
We then have

∂p(®r, t)
∂t

= D∇2 ∂p(®r, t)
∂t

for Mean Square displacement, ®r(0) = ®0〈
∆r2(t)

〉
=

〈
|®r(t) − ®r(0)|2

〉
=

∫
d®rr2p(®r, t)

d
dt

〈
∆r2(t)

〉
= D

∫
dxdydz(x2 + y2 + z2)

(
∂2p
∂x2 +

∂2p
∂y2 +

∂2p
∂z2

)
= 3D

∫
dxdydz · x2 ∂

2p
∂x2 · · · · · · 1

+ 6D
∫

dxdydz · x2 ∂
2p
∂y2 · · · · · · 2

for the term 2, it equals to 0; for the term 1, we make integrals by parts twice

1 → 3D
∫

dydz
{[

x2 ∂p
∂x

] xmax

xmin
−

∫
dx2x

∂p
∂x

}
thus 1 + 2 → 6D

∫
dxdydzp(x, y, z, t) = 6D. We obtain Einstein’s equation

d
dt

〈
∆r2(t)

〉
= 6D〈

∆r2(t)
〉
= 6Dt
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Note that 6 = 2 × 3, namely 2 times the number of dimensions.
Yet, this whole derivation requires Fick’s law, which is not always valid. In particular, at small

time (ie the inertial regime), the mean square displacement is quadratic. Indeed, in the inertial
regime, ®F = 0 so ∆®r(t) = ®v(0)t, and ∆r2(t) = v2(0)t2.

• In the initial region, ∆r2(t) ∝ t2

• In the diffusive region, ∆r2(t) ∝ t

Connection between diffusion and time-correlation diffusion.
Collisions randomize velocity, and diffusion faster when velocity remains correlated

∆®r(t) =
∫ t

0
dτ®v(τ)

d
dt

〈
∆r2(t)

〉
=

d
dt

〈
|®r(t) − ®r(0)|2

〉
= 2 〈®v(t) · |®r(t) − ®r(0)|〉 = 2 〈®v(0) · [®r(0) − ®r(−t)]〉

= 2
∫ 0

−t
〈®v(0) · ®v(τ)〉dτ = 2

∫ t

0
〈®v(0) · ®v(τ)〉dτ

thus we find the relation

lim
t→∞

d
dt

〈
∆r2(t)

〉
= 2

∫ ∞
0
〈®v(0) · ®v(τ)〉dτ = 6D

and we call the equation below as Green-Kubo relation, where 3 originates from the number of
dimensions.

D =
1
3

∫ ∞
0
〈®v(0) · ®v(τ)〉dτ

If D = 0, it means the integrals compensate with each other. It is sensitive to long tails. Einstein
relation is available only if t is large enough.

At a certain temperature T0, NVT not correct for kinetic, thus we sample to NVE system, then
T would fluctuate around T0 average.
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4 Rate Theory

biblio:
Chandler, Intro to Modern Stat. Mech., chpt 8
Peters, Reaction Rate Theory and Rate Events, chpt 10 13 16 17

4.1 Rate laws and Time-Correlation Functions

4.1.1 Phenomenological rate laws

We consider the most simple reaction below, with two rate constant kAB and kBA for the toward
and backward reaction, respectively

A↔ B

thus we could write the concentration function

[A] (t) = 〈[A]〉 + {[A] (0) − 〈[A]〉} e−t/τ

[B] (t) = 〈[B]〉 − {[A] (0) − 〈[A]〉} e−t/τ

and we have the decay time τ and its expression 1
τ = kAB + kBA

4.1.2 Microscopic Approach

Consider a reaction system with N particles in total, the number of particles in A could be
expressed as

nA(t) =
N∑

i=1
hA [qi(t)]

where qi is the reaction coordinate, and hA is the modified Heaviside function. If q < q∗, hA(q) = 1,
else hA(q) = 0.

Introduce Relaxation following initial perturbation hamiltonian, H = H0 − εnA. The relaxation
after perturbation is turned off.

n̄A(t) =

∫
dpdqe−β(H0−εnA)eiL0tnA(0)∫

dpdqe−β(H0−εnA)

where we use the relation that eiL0tnA(0) ' nA(t). Then we make perturbation expansion of ε , the
o represents equilibrium

n̄A(t) =
〈eβεnAnA(t)〉o
〈eβεnA〉o

'
〈nA〉o + βε 〈nA(0)nA(t)〉o

1 + βε 〈nA〉o
' 〈nA〉o + βε

[
〈nA(0)nA(t)〉 − 〈nA〉

2
o
]
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where we’ve seen
[
〈nA(0)nA(t)〉 − 〈nA〉

2
o
]
= 〈δnA(0)δnA(t)〉, with δnA(t) = nA(t) − 〈nA〉.

n̄A(t) − 〈nA〉o

n̄A(0) − 〈nA〉o
=
〈δnA(0)δnA(t)〉o
〈δn2

A〉o

Such an equation told us that! The system loses microscopic memory ∼macro system perturbation
correlation. We call the linear response above as Onsager regression.

4.1.3 Reaction flux

From Rate Law

n̄A(t) − 〈nA〉o

n̄A(0) − 〈nA〉o
= e−t/τ =

〈δnA(0)δnA(t)〉o
〈δn2

A〉o
=

N 〈δhA [q(0)] · δhA [q(t)]〉
N 〈(δhA)

2〉

then we add d/dt, note C(t) = C(−t) and ÛC(t) = − ÛC(−t)

−
1
τ

e−t/τ =
〈δhA [q(0)] d

dt δhA [q(t)]〉

〈(δhA)
2〉

=
−〈δhA [q(t)] d

dt δhA [q(0)]〉
〈(δhA)

2〉

then we use the property of Heaviside funciton hA = h2
A

〈(δhA)
2〉 = 〈(hA)

2〉 − 2〈hA〉
2 + 〈hA〉

2 = 〈hA〉 − 〈hA〉
2 = (1 − 〈hA〉)〈hA〉

2 = 〈hA〉〈hB〉

−
1
τ

e−t/τ = −
〈
Û
δhA(0)δhA(t)〉
〈hA〉〈hB〉

take the hypothesis t � τ, we have e−t/τ ' 1, and 〈hA〉 + 〈hB〉 = 1 as well,

1
τ
= kAB + kBA = kAB

(
1 +
〈hA〉

〈hB〉

)
=

kAB

〈hB〉

thus we have

kAB =
〈
Û
δhA(0)δhA(t)〉
〈hA〉

note the Heaviside function is the integration of delta distribution

Û
δhA(0) =

d
dt
δhA [q(t)] |t=0 =

dq
dt
|t=0 {−δ [q(0) − q∗]}

kAB =
1
〈hA〉
〈 Ûq(0) {−δ [q(0) − q∗]} δhA(t)〉

δhA(t) = hA [q(t)] − 〈hA〉 = 1 − hB [q(t)] − 〈hA〉

kAB =
1
〈hA〉
〈 Ûq(0)δ [q(0) − q∗] hB [q(t)]〉
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where 〈hA〉 is the normalized factor with probability in A, Ûq(0)δ [q(0) − q∗] is the flux through
Transition State at t = 0, and hB [q(t)] is the probability to be in B after delay time t.

It seems weird that kAB is a function of time t, rather than a constant. Indeed, in short delay t,
rate to B is just depends on the initial velocity, because we start from q∗ inside the delta function.
Only if hB [q(t)] is not correlated with initial velocity, we could extract that from average 〈· · · 〉.

4.2 Transition State Theory

Eying, Wigner, Polary, 1930-1935
Central hypothesis:

• No recrossing;
• quasi-eq on reactant side, MB distribution
• Born-Oppenhemier approximation
• classical separable motion algorithm coordination at TS
TST rate constant, no recrossing hB(t) = θ [ Ûq(0)]

kTST =
1
〈hA〉
〈 Ûq(0)δ [q(0) − q∗] θ [ Ûq(0)]〉 = 〈 j,X〉R

the real rate constant k = κkTST with κ ∈ [0,1]

κ =
k

kTST
=
〈δ [q(0) − q∗] Ûq(0)hB(t)〉
〈δ [q(0) − q∗] Ûq(0)θ [q(0)]〉

Ûq(0) hB(t) Ûq(0)hB(t) θ [ Ûq(0)]
+ 1 + = +
+ 0 0 < +
− 1 − < 0
− 1 0 = 0

4.3 Correction to TST

NB: TST is usually very good approximations of k

4.3.1 Kramer theory (1940s)

with Langevin equation
m Üq = −

∂V
∂q
− mγ Ûq + F
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Kramers result for

κ =
γ

ω,
©«
√

1
4
+
ω,2

γ2 −
1
2
ª®¬

where ω, is supposed the frequency for harmonic potential at the peak.
• low friction κ ∼ 1
• high friction κ ∼ ω,

γ → 0

4.3.2 Grote-Hynes (1980s)

Hynes was in ENS before
GLE used, coordinate would not respond simultaneously, decay exist. If environment could not
respond quickly enough, species cross the barrier without recrossing before solvent response.

m Üq = −
∂V
∂q
− m

∫ t

0
ζ(t − τ) Ûq(τ)dτ + F(t)

where
∫
· · · is the decay force due to solvent, 〈F(0)F(t)〉 = mkBTζ(t).

ω2
r − ω

,2 + ωr

∫ ∞
0

e−ωr tζ(t)dt = 0

where ωr is the effective barrier frequncy. This is Grote-Hynes equation, and we have κGH =
ωr

ω,

Limiting regimes:
1. Solvent fast with respect barrier crossing time

ζ(t) = ζ0δ(t), Kramer result, full friction
2. Very slow solvent, τ � 1/ω,.

m Üq = −
∂V
∂q
− m

∫ t

0
ζ(t − τ) Ûq(τ)dτ + F(t)

we expand that with harmonic approximation, where

ζ(t − τ) Ûq(τ) ∼ −mζ(0) [q(t) − q(0)] ∼ −
m
2

d
dq

[
ζ(0) (q(t) − q(0))2

]
m Üq = −

∂

∂q

[
V(q) +

m
2
ζ(0) (q(t) − q(0))2

]
+ F(t)

at the top of barrier V(q) ' V(q,) − 1
2mω,(q − q,)2, and the effective frequency at barrier

ωr =
√
ω,2 − ζ(0)

Weak friction κGH =
ωr

ω, =
√

1 − ζ(0)/ω,2, so κGH ∼ 1
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Strong friction called dynamical caging, system is trapped at the Transition State by solvent
even though it is more stable to cross the barrier toward reactant of product

In general, kTST > k and κKramer < κGH , since the system is not so fast in general, Kramer
overestimate. Reaction faster inside enzyme than in solution ? block box, potential barrier, enzyme
dynamical.

5 Quantum Time-Dependent Stat. Mech.

Application to Spectroscopy & Energy transfer

Ref: Tuckerman chpt. 14; Notes A. Tokmokoff (UChicago)

5.1 Introduction

Note that 〈· · · 〉 means ensemble average, but bra-ket in Quantum Mechanics (QM).

5.2 Time-Dependent Perturbation Theory

Allow transition without disturbing original states. We pose Ĥ0 the unperturbed Hamiltonian,
Ĥ1(t) the time-dependent hamiltonian, the total hamiltonian Ĥ(t) = Ĥ0 + Ĥ1(t), and the time-
dependent Schrödinger equation Ĥ(t) |ψ(t)〉 = −i~∂t |ψ(t)〉 . There are two approaches / pictures
of QM.

• Time-dependence in state vector?
• Time-dependence in operator?
• Time-dependence in both?

Schrödinger picture Operator Ĥ time-independent, state vector time-dependent

Ĥ(t) |ψ(t)〉 = −i~∂t |ψ(t)〉 ⇒ |ψ(t)〉 = exp
[
−

i
~

Ĥ(t − t0)
]
|ψ(t)〉

and the observable 〈Â(t)〉 = 〈ψ(t)
��Â��ψ(t)〉

Heisenberg picture Operator time-dependent, state vector time-independent

d Â
dt
=

1
i~

[
Â, Ĥ

]
⇒ Â(t) = exp

[
+

i
~

Ĥ(t − t0)
]

Â(t0) exp
[
−

i
~

Ĥ(t − t0)
]

and the observable 〈Â(t)〉 = 〈ψ(t)
��Â(t)��ψ(t)〉
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Interaction picture We treat Ĥ0 with Schrödinger picture, Ĥ1 with Heisenberg picture, namely
operator and state vector all time-dependent. Operator evolves according to Ĥ0, while state vector
evolves according to Ĥ1

|ψS(t)〉 = exp
[
−

i
~

Ĥ(t − t0)
]
|ψS(t0)〉

ÂI(t) = exp
[
+

i
~

Ĥ0(t − t0)
]

ÂI(t0) exp
[
−

i
~

Ĥ0(t − t0)
]

|ψI(t)〉 = exp
[
+

i
~

Ĥ0(t − t0)
]
|ψS(t)〉

5.3 Time Correlation Function and frequency spectroscopy

5.3.1 Thermal average

|ψI(t)〉 = exp
[
−

i
~
(Ĥ − Ĥ0)(t − t0)

]
|ψS(t0)〉

= exp
[
+

i
~

Ĥ0(t − t0)
]
|ψS(t)〉

For Average transition rate, we use Fermi Golden Rule R(ω) =
∑

i pi
∑

f Ri→ f (ω) where pi is the
thermal probability.

R(ω) =
2π
~
|F(ω)|2

∑
i, f

pi
��〈ψ f

��V̂ ��ψi
〉��2 δ(E f − Ei − ~ω)

where F(ω) is the amplitude of incoming field, V̂ is the perturbation due to interaction with fields,
δ() allows the energy conservation

5.3.2 Time Correlation Function

Note the Fourier transform δ(E) = 1
2π~

∫ +∞
−∞

dE exp(iEt/~)

R(ω) =
1
~2

∫ +∞
−∞

dt |F(ω)|2
∑
i, f

pi exp
[

i
~
(E f − Ep − ~ω)t

] ��〈ψ f
��V̂ ��ψi

〉��2
=

1
~2 |F(ω)|

2
∫ +∞
−∞

dte−iωt
∑
i, f

pi 〈ψi
��V̂ ��ψ f 〉〈ψ f

��V̂ ��ψi〉 exp(
it
~

E f ) exp(−
it
~

Ei)

=
1
~2 |F(ω)|

2
∫ +∞
−∞

dte−iωt
∑
i, f

pi 〈ψi
��V̂ ��ψ f 〉〈ψ f

���eiE f t/~ · V̂ · e−iEit/~
���ψi〉
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note that
∑

f

��ψ f 〉〈ψ f
�� = 1

R(ω) =
1
~2 |F(ω)|

2
∫ +∞
−∞

dte−iωt
∑
i, f

pi 〈ψi
��V̂ ��ψ f 〉〈ψ f

��V̂I(t)
��ψi〉

=
1
~2 |F(ω)|

2
∫ +∞
−∞

dte−iωt
∑
i, f

pi
〈
ψi

��V̂I(0)V̂I(t)
��ψi

〉
R(ω) =

1
~2 |F(ω)|

2
∫ +∞
−∞

dte−iωt 〈V̂I(0)V̂I(t)
〉

5.3.3 Some aspects of quantum TCFs

Microscopic reversibility requires Ri→ f (ω) = R f→i(ω), but note R(ω) , R(−ω). We then
repeat the process before [suppose F(−ω) = F(ω)]

R(−ω) =
2π
~
|F(ω)|2

∑
i, f

pi
��〈ψ f

��V̂ ��ψi
〉��2 δ(E f − Ei + ~ω)

=
2π
~
|F(ω)|2

∑
i, f

p f
��〈ψi

��V̂ ��ψ f
〉��2 δ(Ei − E f + ~ω)

=
2π
~
|F(ω)|2

∑
i, f

pie−β~ω
��〈ψi

��V̂ ��ψ f
〉��2 δ(E f − Ei − ~ω) = e−β~ωR(ω)

R(−ω) =
1
~2 |F(ω)|

2
∫ +∞
−∞

dte+iωt 〈V̂I(0)V̂I(t)
〉
=

1
~2 |F(ω)|

2
∫ +∞
−∞

dte−iωt 〈V̂I(t)V̂I(0)
〉

we could find the relation
[
V̂I(0), V̂I(ω)

]
, 0 ↔ R(−ω).

For Energy Absorption spectrum, "Net" energy absorbed by unit of time at frequency ω

Q(ω) = [R(ω) − R(−ω)] ~ω = ~ω(1 − e−β~ω)R(ω)

R(ω) + R(−ω) = (1 + e−β~ω)R(ω) =
1
~2 |F(ω)|

2
∫ +∞
−∞

dte−iωt [〈
V̂I(0)V̂I(t)

〉
+

〈
V̂I(t)V̂I(0)

〉]
therefore

Q(ω) =
2ω
~
|F(ω)|2 tanh

(
β~ω

2

) ∫ +∞
−∞

dte−iωt
〈

1
2

{
V̂I(0), V̂I(t)

}〉
at the classical limit, we have ~→ 0

Qcl(ω) = βω
2 |F(ω)|2

∫ +∞
−∞

dte−iωt 〈V̂(0)V̂(t)〉cl

finally we connect with TCF !!!
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5.4 Optical Absorption Coefficient

5.4.1 Derivation

Introduction of system with incident light wave interaction hamiltonian, where E(t) is the
amplitude

ĤI(t) = −µ̂ · ε̂ · E(t)

absorption coefficient =
net absorbed energy/unit of time

incident energy flux (Poynting vector)

α(ω) ∝
ω

~c
tanh

(
β~ω

2

) ∫ +∞
−∞

dte−iωt
〈

1
2
{ µ̂(0), µ̂(t)}

〉
αcl(ω) ∝

βω2

c

∫ +∞
−∞

dte−iωt 〈µ̂(0), µ̂(t)〉cl

and the linescope

σ(ω) =
1

2π

∫ +∞
−∞

dte−iωt 〈 ®µ(0) · ®µ(t)〉

spontaneous fluctuation of ®µ, molecule of field

5.4.2 Application to IR spectroscopy

®µ = ®µ0 +
∂ ®µ

∂q
|q=0 · q + O(q2)

where ®µ0 is the permanent dipole moment

σ(ω) =
1

2π

����∂µ∂q

����2 ∫ +∞
−∞

dte−iωt 〈q(0) · q(t)〉

where q refers to the nuclear displacement

5.4.3 Application to Raman Spectroscopy

Track: Replace dipole with dipole induced by the 1st interaction

®µint = α · ®E(t) α = α0 +
∂α

∂q
|q=0 · q + O(q2)

linescope

σ(ω) =
1

2π

∫ +∞
−∞

dte−iωt 〈q(0) · q(t)〉
����∂α∂q

����2
Both IR & Raman spectroscopy are related to the nuclear displacement.
Selection Rule Difference?
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Part II

Stat. Mech. (Guilluam Stirnemann)

6 Chpt 1. Basic Conceptions of Stat. Mech.

6.1 Why Stat. Mech.?

Biochemical systems contain many (∼ 1023) particles, + non-trivial interactions among them.
Q: How to extract valuable information about the system?
A: Probability approach = Stat. Mech.

Developed in 19th century (Maxwell, Gibbs), thermodynamics, we will focus on dynamical
aspects, which is important in chemistry.

Stat. Mech.: probabilities based on positions (rN ) and momenta (PN ), we will be working with
phase space Π(rN,PN ) in 6N dimensions, where N is the number of particles. In stat. mech.,

Proba(rN ) ∝ exp [−H(r)]

whereH is the classical hamiltonian of the system.

6.2 From Newton equations to the Lagrangian formulations

6.2.1 Newtown’s equation

For a system with N particles in 3D, we have positions {ri}i=1,··· ,N and velocities {vi}i=1,··· ,N .
Suppose Fi as the forces acting on particles, in principle, it depends no the positions and velocities.
We have the Newton second law

m
dvi

dt
= Fi

or another form
mÜri = Fi

We have N such equations. Introduce pi = mivi,

dpi

dt
= Fi ∀i

the classical evolution of N-particles system is fully determined by a total 6N equations.

24



6.2.2 Conservative forces

To go further, we now make the assumption that all forces in the system are conservative.
Define. A conservative forces is a force that is derives from a function called potential energy.

Fi(r1,r2, · · · ,rN ) = −∇iU(r1,r2, · · · ,rN )

it does not depend on velocity at anytime.
Why is it conservative? Suppose that WAB =

∫ B
A
®Fid®ri, if ®Fi = −®∇Ui, we have WAB = UA −UB,

therefore ∮
®Fd®l = 0

6.2.3 Lagrangian formulations

We have seen the potential energy. We also introduce a quantity called kinetic energy

K( Ûr1, Ûr2, · · · , ÛrN ) =
1
2

N∑
i=1

mi Ûr2
i

Define. The Lagrangian L in the difference between kinetic and potential energy expressed

L(r1,r2, · · · ,rN, Ûr1, Ûr2, · · · , ÛrN ) = K( Ûr1, Ûr2, · · · , ÛrN ) −U(r1,r2, · · · ,rN )

The equations of motion are generalized via Euler-Lagrange equation

d
dt

(
∂L

∂ Ûri

)
−
∂L

∂ri
= 0

∂L

∂ Ûri
= m Ûri ⇒

d
dt

(
∂L

∂ Ûri

)
= mÜri

∂L

∂ri
= −

∂U
∂ri
= Fi

You could use any conjugate variables inside Euler-Lagrange equations, including position &
momentum, energy & time. For more details, see Tuckerman page 12-13.

6.2.4 Energy Conservation

An important sequence of conservative forces is that energy is conserved. The total energy is
the sum of kinetic energy and potential energy:

E = K +U =
1
2
∑

i

mi Ûr2
i +U
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we have the derivative
dE
dt
=
∑

i

mi Ûri Üri +
dU
dt

dU
dt
=

dU
dri

dri

dt
=

dU
dri
Ûri

thus
dE
dt
=
∑

i

Ûri

(
mi Üri +

∂U
∂ri

)
= 0

since mi Üri = −∂U/∂ri = Fi is always valid. Therefore E is conserved.

6.3 Hamiltonian formulations

We will now use another formulations, which is connected to the Lagrangian formulation but
often more useful. Indeed, Hamiltonian could be derived from Lagrangian by Legendre Transform.

6.3.1 Legendre transform

Suppose f : x → f (x), if s = ∂ f
∂x , then we have the transform

f̂ (s) = f (x) − sx

if si =
∂ f
∂xi

, then we have the Legendre transform of f :

f̂ (s1, · · · , sN ) = f (x1, · · · , xN ) −
∑

i

si xi

6.3.2 Construction of Hamiltonian

According to Lagrangian
∂L

∂ Ûri
= mi Ûri = pi

we then make Legendre transform

L̂ = L −
∑

i

piri = K −U −
∑

i

piri =
1
2
∑

i

mi Ûr2
i −U −

∑
i

piri = −
1
2
∑

i

mi Ûr2
i −U = −H

we call the Hamiltonian

H(r1, · · · ,rN, p1, · · · , pN ) =
1
2
∑

i

p2
i

2mi
+U(r1,r2, · · · ,rN )
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This is the total energy of the system expressed in terms of positions and momenta. One can easily
know that

Ûri =
∂H

∂pi
pi = −

∂H

∂ri

there are 6N equations in total.
Like the Lagrangian formulations, the proof of the Hamiltonian is that we can write such

equations for any set of conjugated coordinations, prove

Ûqα =
∂H

∂pα
pα = −

∂H

∂qα

6.3.3 Energy Conservation

Hamiltonian is conserved, since

dH
dt
=
∑

i

(
∂H

∂ri

∂ri

∂t
+
∂H

∂pi

∂pi

∂t

)
=
∑

i

(
− Ûpi

∂ri

∂t
+ Ûri

∂pi

∂t

)
= 0

If we take a point in phase space X with X(t = 0) = {r1(0), · · · ,rN (0), p1(0), · · · , pN (0)}, the phase
space trajectory will satisfyH [X(t)] = const; constant energy on a 6N − 1 hypersurface.

6.4 Phase Space Motion

6.4.1 Poissons Bracket & Liouville

In phase space, we suppose Γ(q, p) = (qi, pi)i=1,··· ,N . Let’s consider a function F(Γ, t)

dF
dt
=
∂F
∂t
+
∑

i

(
∂F
∂qi
Ûqi +

∂F
∂pi
Ûpi

)
=
∂F
∂t
+
∑

i

(
∂F
∂qi

∂H
∂pi
−
∂F
∂qi

∂H
∂qi

)
=
∂F
∂t
+ {F,H}

with Poisson Bracket
{F,G}i =

∂F
∂qi

∂G
∂pi
−
∂F
∂pi

∂G
∂qi

We can also define the so-called Liouville operator

iL · = {·,H}

thus
dF
dt
=
∂F
∂t
+ iL F

F is a constant of motion if ∂F/∂t = 0 and iL F = 0 for all t. We can also write

iL =
∑

i

(
qi

∂

∂qi
+ pi

∂

∂pi

)
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In general, ∂F/∂t = 0 therefore
dF
dt
= iL F

F [Γ(t)] = exp [iL (t − t0)] F [Γ(t0)]

where exp [iL (t − t0)] is the propagator, and F [Γ(t0)] is Heisenberg formulation. In particular, we
have the trajectory in phase space

Γ(t) = exp (iL t) · Γ(0)

6.4.2 Conservation Laws

System without external forces
∑

i Fi = 0, and
∑

i −
∂H
∂qi
= 0. Consider the total momenta

P =
∑

i pi,
iL P =

∑
i

{pi,H} =
∑

i

Ûpi =
∑

i

Fi = 0

thus the momenta is conserved.
We will make the analogy with hydrodynamics, ∇®σ = 0 means incompressible flow,

∇x ÛX =
∑

i

(
∂ Ûqi

∂qi
+
∂ Ûpi

∂pi

)
=
∑

i

[
∂

∂qi

(
∂H

∂pi

)
−

∂

∂pi

(
∂H

∂qi

)]
=
∑

i

(
∂2H

∂qi∂pi
−

∂2H

∂pi∂qi

)
= 0

we have shown thatmotion in phase space is incompressible; in other word, the volume is conserved.
This is one form of the Liouville theorem.

6.4.3 Phase Space Density & Liouville equation

We will now adapt a probability approach, namely "phase space density"
ρ(Γ, t)dΓ, the probability of observing the system between Γ and Γ + dΓ

What’s the time evolution of ρ? ρ(Γ,0) → ρ(Γ, t), this is given by the Liouville equation

∂ρ(Γ, t)
∂t

+ iL ρ(Γ, t) = 0

See Tukermann page 64-70 for demonstration.
At equilibrium, ∂ρ∂t = 0, also we should have

iL ρ = 0 ↔ ρ(Γ, t) = ρ(Γ,0)

this is another version of Liouville theorem, ρ the phase space density is conserved.
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6.4.4 Ensemble average at equilibrium

〈A〉 =
∫

dΓρ(Γ, t)A(Γ)

One can show that the general solution of the Liouville iL ρ = 0, is any function of the Hamiltonian

ρ(Γ) = F [H(Γ)]

This function F should generate the fact that ρ is normalized
∫

dΓρ(Γ) = 1, and that is adversed of

ρ(Γ) =
1
Z

F(H)

with the partition function Z =
∫

dΓF [H(Γ)]For the canonical ensemble for example, β = 1/(kBT)

ρ(H) =
exp(−βH)

Z

29



7 Chpt 2. Brownian motion and diffusion processes

7.1 From early experimental observation to the Einstein theory

7.1.1 Brown (1827)

Brown, British botanant, reported on the randommotion of pollen particles under a microscope.
The same thing happens with coal dust, leading to nothing about alive matters. This matches earlier
observations. Brown speculates this is due to impact with solvent molecules, implying indirect
evidences of atoms. *** Echoes agnostic theory developed around that time by Dalton & others,
but there was no direct measurement or observation of atoms.

7.1.2 Einstein (1905), Theory of Brownian Motion

Clean connection with the motion of impacts with atoms. Einstein proposes a stochastic model
for Brownian motion. There are two main results:

1. D↔ mobility of the particle;
2. D↔ mean square of displacement;

for
1. he looks at flux conservation;
2. he makes the following demonstration; (and also recovers the diffusion equation)
As for a system with N particles at time t = 0, we have the positions

{
x0

i , y
0
i , z

0
i

}
, after the time

τ, each of these particles has experienced a displacement ∆i.
∆ follows a probability distribution φ, with dn = Nφ(∆)d∆, where dn is the number of particles that
experience a jump between ∆ and ∆ + d∆ during τ. Note φ(∆) = φ(−∆), and we have normalized
condition ∫ +∞

−∞

φ(∆)d∆ = 1

We now introduce the probability density of particles ρ(x, t)

dxρ(x, t + τ) = dx
∫ +∞
−∞

ρ(x + ∆)φ(−∆)d∆

I can also write
ρ(x, t + τ) = ρ(x) +

∂ρ

∂t
τ + · · ·

ρ(x + ∆, t) = ρ(x) +
∂ρ

∂x
∆ +

∂2ρ

∂x2
∆2

2
+ · · ·
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thus we obtain
ρ(x) +

∂ρ

∂t
τ =

∫ +∞
−∞

[
ρ(x) +

∂ρ

∂x
∆ +

∂2ρ

∂x2

]
φ(∆)d∆

���ρ(x) +
∂ρ

∂t
τ =

����������
ρ(x)

∫ +∞
−∞

φ(∆)d∆ + ρ(x)
∫ +∞
−∞

∆φ(∆)d∆ +
∂2ρ

∂x2

∫ +∞
−∞

∆
2 φ(∆)

2
d∆

since φ(∆) is even function of ∆,
∫ +∞
−∞
∆φ(∆)d∆ = 0, we solve

∂ρ

∂t
=

1
2τ

∂2ρ

∂x2

∫ +∞
−∞

∆
2φ(∆)d∆

Below is microscopic diffusion equation

∂ρ

∂t
= D

∂2ρ

∂x2

we get the diffusion coefficient

D =
1

2τ

∫ +∞
−∞

∆
2φ(∆)d∆ =

〈∆X2〉

2τ

Einstein’s conlusion:
one can measure the average deplacement after a delay τ, λ =

√
2Dτ

at the same time he also obtained (η refers to viscocity , r is the radius of particle)

D =
RT

NA · 6πηr

which allows us to measure NA Avogadro number.

7.1.3 Jean Perrin (1908)

Nobel Prize in 1926. He measured NA with different techniques, which confirmed Einstein’s
theory, and the existence of atoms.

7.1.4 Paul Langevin (1908)

Formation in term of equations of motions and laws of mechanism.
Brillant idea: introduce the concept of a random force.
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7.2 Langevin equation

7.2.1 Friction is not enough

The force required to move this particle in the fluid is

®F = ζ ®a

with ζ as the friction coefficient. Stockes worked on that in 1850s, ζ = 6πηr .
Thus the equation of motion (γ = ζ/m)

m Ûv = −ζv → Ûv = −
ζ

m
v → Ûv = −γv → v(t) = v(0)e−γt

This result cannot explain Brown mechanism, since :
1. v(t) → 0 if t →∞, but particles would not stop;
2. 〈v2〉 = 〈v2(0)〉e−2γt → 0 if t →∞, but it should be kBT

m ;
Langevin equation is to introduce random forces

m
dv
dt
= −ζv + δF

where the first term refers to systematic put of the environment influence, and the second term δF

refers to fluctuation / random put.
What can we write about δF?
• random impacts with solvent molecules;
• very sudden effect, no correlation in space and in time 〈δF(t)〉 = 0

or we write 〈δF(t)δF(t′)〉 = 2Bδ (|t′ − t |), furnished as Gaussian white noise.

7.2.2 Solution of Langevin equation

Introduce Laplace transforms

f̃ (s) =
∫ +∞

0
f (t)e−st dt f̃ ′(s) = s f̃ (s) − f (0)

then we will use that to use the Langevin equation

dv
dt
= −γv +

δF
m

sṽ(s) − v(0) = −γv(s) +
δF(s)

m
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ṽ(s) =
v(0)
s + γ

+
δF̃(s)

m(s + γ)

then we do the inverse transform by L −1 {
F̃(s)G̃(s)

}
→

∫ t
0 F(t − τ)G(τ)dτ

v(t) = v(0)e−γt +

∫ t

0
dt′

δF(t′)
m

exp [−γ(t − t′)]

We check 〈v(t)〉 while t →∞

〈v(t)〉 = 〈v(0)〉e−γt +

∫ t

0
dt′
〈δF(t′)〉

m
exp [−γ(t − t′)] = 〈v(0)〉e−γt → 0

as well as 〈v2(t)〉

〈v2(t)〉 = 〈v2(0)〉e−2γt + 2e−γt
∫ t

0
dt′
〈δF(t)v(0)〉

m
e−γ(t−t ′) +

∫ t

0
dt1

∫ t

0
dt2e−γ(t−t1)e−γ(t−t2) 〈δF(t1)δF(t2)〉

m2

= 〈v2(0)〉e−2γt +

∫ t

0
dt1e−2γ(t−t1)2B

m2

= 〈v2(0)〉e−2γt −
1

2γ
(e−2γt − 1) ×

2B
m2

= 〈v2(0)〉e−2γt +
B
ζm
(1 − e−2γt)

7.2.3 Fluctuation dissipation theorem

Long time limit 〈v2(t)〉 → kBT
m , but now we have 〈v2(t)〉 → B

ζm , leading to

B = kBTζ

We also have 〈δF(0)δF(t)〉 = 2kBTζδ(t). Hence we obtain the
::::::::::
fluctuation

:::::::::::
dissipation

:::::::::
theorem

ζ =
1

kBT

∫ ∞
0
〈δF(0)δF(t)〉dt

7.2.4 Kubo and Stokes-Einstein relationship

Now let’s consider the condition function of v

〈v(0)v(t)〉 = 〈v2(0)〉e−γt

but 1
2m〈v2(0)〉 = kBT

2 , thus

〈v(0)v(t)〉 =
kBT
m

e−γt
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∆x(t) =
∫ t

0
v(τ1)dτ1

〈∆x2(t)〉 =
〈∫ t

0
dτ1

∫ t

0
dτ2v(τ1)v(τ2)

〉
we have its derivative

d
dt
〈∆x2(t)〉 = 2

∫ t

0
dτ〈v(0)v(τ)〉 = 2

∫ t

0
dt′〈v2(0)〉e−γt ′ =

2〈v2(0)〉
γ

(
1 − e−γt )

d
dt
〈∆x2(t)〉 =

2kBT
ζ

(
1 − e−γt )

then we integrate a second time

〈∆x2(t)〉 = 〈∆x2(0)〉 +
2kBT
ζ

[
t +

1
γ

(
e−γt − 1

) ]
= 0 +

2kBT
ζ

[
t +

1
γ

(
e−γt − 1

) ]
t�1/γ
−−−−−→

2kBT
ζ

[
t +

1
γ
(1 − γt)

]
=

kBTγ
ζ

t2 =
kBT
m

t2

t�1/γ
−−−−−→

2kBT
ζ
(t +

1
γ
) =

2kBT
ζ

t

Hence
• at short time, 〈∆x2〉 ∝ t2, refers to ballistic regime;
• at long time, 〈∆x2〉 ∝ t, refers to diffusive regime;

We also recover Einstein’s relation

lim
t→∞

〈∆x2〉

2t
=

kBT
ζ
= D

It also follows from the expression of 〈v(0)v(t)〉∫ ∞
0
〈v(0)v(t)〉dt =

kBT
ζ
= D

which is called Kubo relation

7.2.5 Limitation of Langevin equation

Markovian The Langevin equation is Markovian, the random force is white noise, the friction at
time t is only connected to the velocity at time t.

But the friction could depend on v(s) with s < t, namely the memory effect in the friction. We
replace

ζv(t) → −
∫ t

−∞

K(t − s)v(s)ds
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where K is the friction memory kernel.
This will suppose new conditions on time random force to satisfy an equivalent version of the
"fluctuation dissipation" theorem. Giving up longer white noise, but colored noise, namely non-
Markovian, we would step into Generalized Langevin.

External potential and we assume "free" diffusion In reality, the molecule is always moving
under a potential, with the force ®F = −®∇U. Therefore, we modify the Langevin equation as

dp
dt
= −ζ

p
m
−U′(x) + δF

In practice, very complicated to solve the equation. For example, one issue is that 〈F(x)〉; it can
only be solved in very specific case. An alternative consists in taking a probabilistic picture, and
we can adopt a stochastic approach, leading to Fokker-Planck equation.

7.3 The Generalized Langevin Equation

GLE, see Tuckerman chpt. 15

7.3.1 Model of a system + a bath

* Solvent is very important in chemistry (e.g. the rate limiting step of reactions can be the
reorientation of the solvent molecule.) ⇒ Hence the solvent should be taken into account as a
"bath".

* So far, we have seen a simple description of a bath effect.
• a systematic effect = friction;
• a random effect = random force;
Now we will focus the GLE that will evidence a more complex treatment of a bath. Note GLE

is very useful for some theories of chemical rate + vibrational dephasing & relaxation.
The Hamiltonian of the particle in the absence of bath

H =
p2

2µ
+ V(q)

In the presence of a bath, solvent positions {yi}i=1,··· ,N , and we have

Utotal(q, y1, · · · , yN ) = V(q) +Ubath(q, y1, · · · , yN )

where the last term is for example a sum of 2-body interaction Ubath =
∑

i
∑

j,i U(yi − y j).
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Now let’s assume we have an equilibrium position for U,

{q̄α} = {q̄, ȳ1, · · · , ȳn}

∂Ubath

∂qα
|{q̄} = 0 ∀α

then we compute 2nd order expression of Ubath

Ubath(q, y1, · · · , yN ) = Ubath {q̄, ȳ1, · · · , ȳn}+
�����������∑
α

∂Ubath

∂qα
|q(qα − q̄α)+

1
2
∑
α,β

(qα−q̄α)
∂2Ubath

∂qα∂qβ
(qβ−q̄β)

For simplification, we will shift the potential scale Ubath (q̄, ȳ1, · · · , ȳn) = 0, and we replace qα −

q̄α → qα; and we separate q from other coordinates. Pose Hαβ =
∂2U

∂qα∂qβ
|eq., we can finally write

Ubath(q, y1, · · · , yN ) =

n∑
α=1

cαqyα +
1
2

n∑
α=1

n∑
β=1

Hαβyαyβ

where cα = Hαq/2. The only term left H00 ∼ Hqq would be added into V(q).
There exist the coordinate transformation such that {yα} → {xα}, and the quadratic term

Hαβyαyβ → kαx2
α, namely diagonalization. Thus we could make conclusion that for the total

Hamiltonian

H =
p2

2µ
+ V(q) +

n∑
α=1

(
p2
α

2mα
+ gαqxα +

1
2

mαω
2
αx2

α

)
7.3.2 Derivation of GLE

Ûq =
∂H
∂p
=

p
µ

Ûp = −
∂H
∂q
= −

dV
dq
−
∑
α

gαxα

Ûxα =
∂H
∂pα
=

pα
mα

Ûpα = −
∂H
∂qα
= −gαq − mαω

2
αxα

µ Üq = Ûp = −
dV
dq
−
∑
α

gαxα

mα Üxα = Ûpα = −gαq − mαω
2
αxα

Reminder, for Laplace transform

f̃ (s) =
∫ +∞

0
f (t)e−st dt f̃ ′(s) = s f̃ (s) − f (0)

hence we do that twice

s2 x̃α(s) − Ûxα(0) − sxα(0) = −
gα

mα
q̃(s) − ω2

α x̃α(s)
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x̃α(s) =
s

s2 + ω2
α

xα(0) +
Ûxα(0)

s2 + ω2
α

−
gαq̃(s)

mα(s2 + ω2
α)

since L (cos bt) = s
b2+s2 and L (sin bt) = b

b2+s2 , we solve

xα = xα(0) cos(ωαt) +
Ûxα(0)
ωα

sin(ωαt) −
gα

mαωα

∫ t

0
dτq(τ) sin [ωα(t − τ)]

after Integration by part for the last term,

→→→
1
ωα
[q(t) − q(0) cos(ωαt)] −

1
ωα

∫ t

0
Ûqα(τ) cos [ωα(t − τ)] dτ

Now we insert that to the first equation, obtaining the GLE:

µ Üq = −
dV
dq
−
∑
α

qαxα = −
dV
dq
−
∑
α

gα

[
xα(0) cos(ωαt) +

pα(0)
mαωα

sin(ωαt) +
gα

mαω
2
α

q(0) cos(ωαt)
]

−
∑
α

g2
α

mαω
2
α

∫ t

0
dτ Ûq(τ) cos [ωα(t − τ)] +

∑
α

g2
α

mαω
2
α

q(t)

This corresponds to a form of the GLE

µ Üq = −
dW
dq
−

∫ t

0
dτ Ûq(τ)ζ(t − τ) + R(t)

where W(q), ζ(t),R(t) represents the potential of mean force, friction, random force.

W(q) = V(q) −
∑
α

gα

2mαω
2
α

q2

ζ(t) =
∑
α

g2
α

mαω
2
α

cos(ωαt)

R(t) = −
∑
α

gα

[(
xα(0) +

g2
αq(0)

mαω
2
α

)
cos(ωαt) +

pα(0)
mαω

2
α

sin(ωαt)
]

• Potential of mean force. "Effective" potential along q, basically a projection of the system
force-energy along q.

• Random force. Does not seem random but in practice, we have so many solvent particles, so
many frequencies and the total friction, R(t) will look random.
By taking average in the canonical ensemble, 〈q(0)R(t)〉 = 0, 〈 Ûq(0)R(t)〉 = 0 for all t. We
can also estimate 〈R(0)R(t) = 1

β

∑
α

g2
α

mαω
2
α

cos(ωαt), as well as 〈R(0)R(t) = kBTζ(t) . The
fluctuation-dissipation theorem is recovered!

• The dynamical friction kernel.
∫ t

0 dτ Ûq(τ)ζ(t−τ)means that the bath has a finite time response
to the fluctuation of the motion along q. The characterization of ζ(t) are given by the TCF
of the random force.
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Limitations
• As for Infinitely fast response ζ(t) = 2ζ0δ(t), 〈R(0)R(t)〉 = 2kBTζ0δ(t)

µ Üq = −
dW
dq
−

∫ t

0
dτ Ûq(τ) × 2ζ0δ(t − τ) + R(t)

we recover the Langevin equation

µ Üq = −
dW
dq
− ζ0 Ûq(t) + R(t)

• As for Infinitely slow response, ζ(t) = constant along the motion∫ t

0
dτζ(t − τ) =

∫ t

0
τ Ûq(τ)ζ = ζ [q(t) − q(0)]

µ Üq = −
d

dq

[
W(q) +

ζ

2
(q(t) − q(0))2

]
+ R(t)

where the extra term (q(t) − q(0))2 represents the dynamic caging effect, which means that
the particle would be trapped inside solvent cage.

7.4 Fokker-Planck equations & applications

7.4.1 Derivation of the Fokker-Planck

Ref: Zwanzig ch 2.2
WHat’s FP?

Form of Liouville equation to study stochastic motion of a dynamical system obeying a GLE with
white noise.

Interest?
To study "non-linear" Langevin equation ( when a potential is added)

... Fokker obtained PhD in 1913. Kolmegorov (1931) got the same equation but in a more
general form.

***
Wewill the very general derivation a = (a1, · · · ,an) set variables that obeys a Langevin Equation

withe white noise 〈F(0)F(t)〉 = 2Bδ(t), da
dt = v(a) + F(t) for any function v(a) of a.

Let’s consider the probability density of a at time t, f (a, t), where we have the normalized condition∫
f (a, t)da = 1. According to the conservation law

∂ f
∂t
+ div(V f ) = 0 ↔

∂ f
∂t
+

∂

∂a

(
da
dt

f
)
= 0
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which is just the Liouville equation, and V = da
dt . Thus we have

∂ f
∂t
= −

∂

∂t
[v(a) f (a, t) + F(t) f (a, t)]

Let’s call L· = ∂
∂av(a)·, this equation can be solved and the solution is

f (a, t) = e−tL f (a,0) −
∫ t

0
dse−(t−s)L ∂

∂a
F(s) f (a, s)

we now inject that into the expression mentioned above, obtaining

∂ f
∂t
= −L f (a, t) −

∂

∂a
F(t) f (a,0)e−tL +

∂

∂a
F(t)

∫ t

0
dse−(t−s)L ∂

∂a
F(s) f (a, s)

We will now take the ensemble average 〈· · · 〉 (average over noise)

∂〈 f (a, t)〉
∂t

= −L 〈 f (a, t)〉 −
∂

∂a

〈
F(t) f (a,0)e−tL

〉
+

∂

∂a

〈
F(t)

∫ t

0
dse−(t−s)L ∂

∂a
F(s) f (a, s)

〉
where the second term vanishes since we have random force with zero ensemble average. As for
the third term, we have 〈F(t)F(s)〉 = 2Bδ(t − s). Finally, we got General form of Fokker-Planck
equation

∂〈 f (a, t)〉
∂t

= −
∂

∂a
v(a)〈 f (a, t)〉 +

∂

∂a
B
∂

∂a
〈 f (a, t)〉

Note thatwemade an assumption between B and v(a) (such as a fluctuation-dissipation theorem).
In practice, one can imagine that B need not compensate for friction.

• If B is too big, system expands in phase space;
• If B is too small, system will shrink in phase space
• If B exactly compensate for friction, we got FD theorem, we reach a steady state.

7.4.2 Brownian motion and Smoluchowski equation

a =

(
x

p

)
Ûa =

(
Ûx

Ûp

)
Ûx =

p
m

Ûp = −U′(x) − ζ
p
m
+ Fp(t) 〈Fp(t)Fp(t′)〉 = 2ζ kBTδ(t − t′)

F(t) =

(
0

Fp(t)

)
B =

(
0 0
0 ζ kBT

)
thus FP eq. turns to

∂ f
∂t
= −

∂

∂x
p
m

f −
∂

∂p

[(
−U′(x) −

ζp
m

)
f
]
+ ζ kBT

∂2

∂p2 f
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if ζ = 0, we recover the Liouville equation

∂ f
∂t
= −

∂

∂x
p
m

f −
∂

∂p
[−U′(x) f ]

∂ f
∂t
+

∂

∂x
p
m

f +
∂

∂p
[−U′(x) f ] = 0

* In the general case where we have noise and friction, the solution of this equation, where "ss"
means steady state ∂ f

∂s = 0

fss(x, p) =
exp [−βH(x, p)]∬

exp [−βH(x, p)] dxdp

Smoluchowski: similar motion (LE) but even simple, we neglect the inertial motion due to
acceleration, namely we are in diffusion regime, so Ûx2 = 0, and t � 1

γ . Thus the LE is just the
function of x

Ûx = −
U′(x)
ζ
+

F(x)
ζ

where v(x) = −U ′(x)
ζ , and the random force F(x)

ζ ↔ B = kBT
ζ

∂ f (x, t)
∂t

= −
∂

∂x

[
−

U′(x)
ζ

f (x, t)
]
+

kBT
ζ

∂2

∂x2 f (x, t)

∂ f
∂t
=

1
ζ

∂

∂x
U′(x) f +

kBT
ζ

∂2 f
∂x2

∂ f
∂t
= D

∂

∂x
e−βU(x) ∂

∂x
eβU(x) f

This is Smoluchowski equation, where D = kBT
ζ . IfU(x) is constant, we have the diffusion equation

again
∂ f
∂t
= D

∂2 f
∂x2

7.4.3 Determination of mean first passage times (mfpt)

Let’s work in a space with the volume V . The motion is following a LE, What is the mean first
passage time? for exiting that volume V , starting from an initial position within V .

We give P(a, t) as the probability density

∂P
∂t
= −

∂

∂a
v(a)P +

∂

∂a
B
∂

∂a
P = DP
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where D · is the diffusion operator

D · = −
∂

∂a
v(a) +

∂

∂a
B
∂

∂a
·

We start from an initial position a0 ∈ V , so P(a,0) = δ(a − a0)

∂P
∂t
= DP ⇒ P(a, t) = eD t P(a,0)

P(a, t) = eD tδ(a − a0)

D†τ = −1

To estimate the mfpt, we are observing boundary condition: at time t → ∞, P(a, t) → 0 for
a ∈ V . The survival probability S(a0, t) = the number of points still in the volume at time t starting
at a0.

S(t,a0) =

∫
V

daP(a, t)

S(t,a0) − S(t + dt,a0) = number of systems in V at time t that escaped during t → t + dt.
We can then define ρ(a0, t)dt the probability of leaving during that time interval

ρ(a0, t) = −
∂S(t,a0)

∂t

ρ(a0, t)dt = S(t,a0) − S(t + dt,a0) = −
∂S(t,a0)

∂t
dt

The mfpt τ(a0) =
∫ ∞

0 dtt × ρ(a0, t)

τ(a0) =

∫ ∞
0

dtt ·
[
−
∂S(t,a0)

∂t

]
=

∫ ∞
0

S(t,a0)dt − [t · S(t,a0)] |
∞
0 =

∫ ∞
0

S(t,a0)dt

Remind that S(t,a0) =
∫

V daP(a, t), τ(a0) =
∫ ∞

0 dt
∫

V daP(a, t), thus

τ(a0) =

∫ ∞
0

dt
∫

V
daeD tδ(a − a0) =

∫ ∞
0

dt
∫

V
daδ(a − a0) · eD†t · 1

τ(a0) =

∫ ∞
0

dteD†t · 1

D†τ(a0) =

∫ ∞
0

dtD†eD†t =
[
eD†t

]
|∞0

if t →∞, then P(a0, t) → 0, and eD†t → 0, finally we obtain D†τ(a0) = −1
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7.4.4 Kramers theory of crossing barrier

High friction limit ζ large → γ large. t � 1/γ, always in the diffusion region, no ballastic
motion, we have Soluchowski equation.

D · = D
∂

∂x
e−βU(0) ∂

∂x
eβU(0)

D†· = DeβU(0) ∂

∂x
e−βU(0) ∂

∂x
·

DeβU(0) ∂

∂x
e−βU(0) ∂

∂x
τ(x) = −1

eβU(0) ∂

∂x
e−βU(0) ∂

∂x
τ(x) =

−1
D

integrate from −∞ to y inside the volume

∂

∂x
e−βU(0) ∂

∂x
τ(x) = −

1
D

e−βU(0) ⇒

[
e−βU(0) ∂

∂x
τ(x)

]
|
y
−∞ =

∫ y

−∞

−
1
D

e−βU(Z)dZ

e−βU(y) ∂

∂x
τ(x)|y = −

1
D

∫ y

−∞

e−βU(Z)dZ

∂

∂x
τ(x)|y = −

1
D

eβU(y)
∫ y

−∞

e−βU(Z)dZ

then integrate from x0 to xmax , note that τ(xmax) = 0 since it’s the transition state point

τ(xmax) − τ(x0) = −
1
D

∫ xmax

x0

eβU(y)dy
∫ y

−∞

e−βU(Z)dZ

τ(x0) =
1
D

∫ xmax

x0

eβU(y)dy
∫ y

−∞

e−βU(Z)dZ

To go further, we assume harmonic potential next to the barrier top and in the reactant.

U(x) = Umin +
1
2

mω2
min(x − xmin)

2 U(x) = Umax −
1
2

mω2
max(x − xmax)

2

*** Limit at small 1/β = kBT

τ(x0) =
1
D

∫ xmax

x0

dyeβU(y)
∫ y

−∞

e−βU(Z)dZ

it is hard to calculate the second integration to y, thus we suppose y → +∞. For the Gaussian
integration ∫ +∞

−∞

e−ax2
dx =

√
π

a
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∫ y

−∞

e−βU(Z)dZ '
∫ +∞
−∞

e−β[Umin+
1
2 mω2

min(x−xmin)
2]dZ = e−βUmin ×

√
2π

βmω2
min

similarly, we make approximations
∫ xmax

x0
→

∫ xmax

−∞
→ 1

2
∫ +∞
−∞∫ xmax

x0

dyeβU(y) =

∫ xmax

x0

dyeβ[Umax−
1
2 mω2

max(x−xmax)
2] '

1
2

eβUmax

√
2π

βmω2
max

There would be little difference while integration due to these approximations. Finally we have

τ(x0) =
1

2D
eβUmax

√
2π

βmω2
max
· e−βUmin

√
2π

βmω2
min

=
π

Dβmωminωmax
eβ(Umax−Umin)

Since D = kBT
ζ ⇒

kBT
D = γm, as well as k = 1

2τ

k =
ωminωmax

2πγ
e−β(Umax−Umin)

at the barrier top. 50% probability to enter the opposite direction, thus we have the coefficient 2.

Low friction limit (See Zwanzig ch 4.5) We cannot apply Smoluchowski, very few impacts with
solvent molecule⇒ the idea is to study diffusion in the energy space

• diffusion equation for P(E, t),

∂

∂t
P(E, t) =

∂

∂E
ζ

m
I(E)

[
1 +

1
β

∂

∂E

]
ω(E) · P(E, t)

2π

• mfpt
• expansion to min/max⇒ τ ∝ 1

ζ ⇒ k ∝ ζ (at low friction); for high γ, k → 0

7.4.5 Experimental observations of Kramers theory

To change the friction in the solutions, it’s hard to add other compounds inside the solvent to
increase several numerical order. Thus, we have to add pressure, then change density, so change
friction, which would change the barrier perhaps. Barrier lowed while increasing friction. (Fig. C)
Fig. D shows curves in different solvents.
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